Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 5 No. 2 (2013)

Thermal-Electrical finite element analysis of nanometric copper vias under high fluence stress

DOI
https://doi.org/10.18272/aci.v5i2.139
Submitted
September 29, 2015
Published
2013-12-09

Abstract

This paper presents the development of a thermal-electrical finite element (FE) model with the objective to analyze failure mechanisms responsible of physical degradation (void, copper silicate formation, etc.) caused by high fluence stress of 90nm copper vias for FinfET devices. Indeed in [1], this physical degradation was interpreted as a main consequence of Joule effect, however their employed model reached too low temperatures to explain the observed physical degradation. In order to confirm this, the steady-state FE model developed in this work computes the temperature increase and distribution caused by high electrical current density flowing through a copper contact, considering non-ideal thermal and electrical interfaces. In addition, a sensitivity analysis is performed as a way to identify critical failure parameters. The temperature response of the model to independent variation of electrical resistivity of studied materials, and interfacial electrical and thermal conductance between the copper contact and its diffusion barrier were obtained. The decrease of interfacial electrical conductance triggers steady-state temperatures over copper and silicate melting points and, in consequence leads to temperature high enough to explain the physical degradation.

viewed = 2050 times

References

  1. Kauerauf, T.; Butera, G.; Croes, K.; Demuynck, S.; Wilson, C.; Roussel, P.; Drijbooms, C.; Bender, H.; Lofrano, M.; Vandevelde, B.; Tokei, Z.; Groeseneken, G. 2010. "Degradation and failure analysis of copper and tungsten contacts under high fluence stress". Reliability Physics Symposium (IRPS), 2010 IEEE International,: 712-716.
  2. Wilk, G.; Wallace, R.; Anthony, J. 2001. "High-K gate dielectrics: Current status and materials properties considerations". Journal of Applied Physics, 89: 5243-5275.
  3. Trojman, L.; Pantisano, L.; Bustamante, J.; Navarro, S. 2010. "EOT sub-nanométrico y degradación de la movilidad: hacia un límite físico con las técnicas de fabricación modernas?". Avances en Ciencias e Ingeniería, 2: 33-35.
  4. Singh, N.; Agarwal, A.; Bera, L.; Liow, T.; Yang, R.; Rustagi, S.; Tung, C.; Kumar, R.; Lo, G.; Balasubramanian, N.; Kwong, D. 2006. "High-performance fully depleted silicon nanowire (diameter < 5 nm) gate-all-around CMOS devices". Electron Device Letters, IEEE, 27: 383-386.
  5. Taur, Y; Wann, C.; Frank, D. 1998. "25 nm CMOS design considerations". Electron Devices Meeting, 1998. IEDM "™98, Technical Digest International,: 789-792.
  6. Kauerauf, T.; Demuynck, S.; Tokei, Z.; Croes, K.; Beyer, G.; Groeseneken, G. 2008. "Reliability analysis of Cu contacts with various diffusion barriers". AMC,: 197-198.
  7. Lee, K. 2003. "Electromigration critical length effect and early failures in Cu/oxide and Cu/low k interconnects". Doctoral dissertation. Retrieved from The Texas University at Austin Database. http://hdl.handle.net/2152/734.
  8. Simulia, D. 2011. "Abaqus Theory Manual 6.11". http://abaqus.ethz.ch:2080/v6.11/books/stm/default.htm. Simulia.
  9. Sabelka, R.; Selberherr, S. 2001. "A finite element simulator for three-dimensional analysis of interconnect structures". Microelectronics Journal, 32: 163-171.
  10. Sungjun, I.; Srivastava, N.; Banerjee, K.; Goodson, K. 2005. "Scaling analysis of multilevel interconnect temperatures for high-performance ICs". Electron Devices, IEEE Transactions on, 52: 2710-2719.
  11. Demuynck, S. 2009. "Patterning and metallization options for advanced contact module integration". Proc. SSDM,: 795-796.
  12. Vos, I.; Hellin, D.; Demuynck, S.; Richard, O.; Conard, T.; Vertommen, J.; Boullart, W. 2007. "A Novel Concept for Contact Etch Residue Removal". ECS Transactions, 11: 403-407.
  13. Huang, Q.; Lilley, C.; Bode, M.; Divan, R. 2008. "Surface and size effects on the electrical properties of Cu nanowires". Journal of Applied Physics, 104: 023709-023709-6.
  14. Wachutka, G. 2001. "Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling". Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 9: 1141-1149.

Most read articles by the same author(s)