Simple Hardware Implementation of Motion Estimation Algorithms

Contenido principal del artículo

Juan Romero
Damien Verdier
Clement Raffaitin
Luis Miguel Procel
Lionel Trojman

Resumen

We present in the following work a hardware implementation of the two principal optical flow methods. The work is based on the methods developed by Lucas & Kanade, and Horn & Schunck. The implementation is made by using a field programmable gate array and Hardware Description Language. To achieve a successful implementation, the algorithms were optimized. The results show the optical flow as a vector field over one frame, which enable an easy detection of the movement. The results are compared to a software implementation to insure the success of the method. The implementation is a fast implementation capable of quickly overcoming a traditional implementation in software.

Detalles del artículo

Cómo citar
Romero, J., Verdier, D., Raffaitin, C., Procel, L. M., & Trojman, L. (2019). Simple Hardware Implementation of Motion Estimation Algorithms. ACI Avances En Ciencias E Ingenierías, 11(3). https://doi.org/10.18272/aci.v11i3.1352
Sección
SECCIÓN C: INGENIERÍAS

Citas

[1] H. A. Mallot, Computational vision: information processing in perception and visual behaviour. MIT Press, 2000.
[2] W. K. Pratt, Digital image processing: PIKS Scientific inside, vol. 4. Wiley-interscience Hoboken, New Jersey, 2007.
[3] K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell., 2005.
[4] K. Mikolajczyk et al., “A comparison of affine region detectors,” Int. J. Comput. Vis., 2005.
[5] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.
[6] M.-K. Hu, “Visual pattern recognition by moment invariants,” IRE Trans. Inf. theory, vol. 8, no. 2, pp. 179–187, 1962.
[7] D. Peleshko, M. Peleshko, N. Kustra, and I. Izonin, “Analysis of invariant moments in tasks image processing,” in 2011 11th International Conference The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), 2011.
[8] A. Buades, B. Coll, and J.-M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul., vol. 4, no. 2, pp. 490–530, 2005.
[9] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2005, vol. 2, pp. 60–65.