Caracterización de las bacterias ácido lácticas aisladas de alimentos fermentados radicionales del Ecuador

Contenido principal del artículo

Linda Guamán
Sonia Zapata
Mariela Serrano
Gabriel A. Trueba P.


En 20 provincias ecuatorianas, se colectaron 91 muestras de alimentos fermentados preparados de forma artesanal con el objetivo de identificar cepas con uso potencial en la producción de alimentos fermentados. Se aislaron 119 cepas que fueron caracterizadas a través de pruebas fenotípicas y secuenciamiento del ADN ribosomal 16S. Del total de cepas aisladas, 47% fueron Lactobacillus sp. heterofermentadores facultativos, 31% fueron cocos homofermentadores pertenecientes a los géneros Pediococcus, Lactococcus y Enterococcus, 11% fueron Lactobacillus sp. heterofermentadores obligados y el 11% restante cocos heterofermentadores de los géneros Weissella y Leuconostoc. Algunas cepas presentaron ciertas propiedades con posible aplicación en la industria alimentaria como actividad caseinolítica y la producción exopolisacárido y bacteriocinas.


La descarga de datos todavía no está disponible.


Cargando métricas ...

Detalles del artículo

Cómo citar
Guamán, L., Zapata, S., Serrano, M., & Trueba P., G. A. (2014). Caracterización de las bacterias ácido lácticas aisladas de alimentos fermentados radicionales del Ecuador. ACI Avances En Ciencias E Ingenierías, 6(1).
Biografía del autor/a

Linda Guamán, Universidad San Francisco de Quito

Universidad San Francisco de Quito, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales,
Calle Diego de Robles y Vía Interoceánica, Campus Cumbayá, Edif Darwin. Casilla Postal 17-1200-841, Quito, Ecuador.

Sonia Zapata, Universidad San Francisco de Quito

Universidad San Francisco de Quito, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales,
Calle Diego de Robles y Vía Interoceánica, Campus Cumbayá, Edif Darwin. Casilla Postal 17-1200-841, Quito, Ecuador.

Mariela Serrano, CSK Food Enrichment

CSK Food Enrichment, Ede, The Netherlands

Gabriel A. Trueba P., Universidad San Francisco de Quito

Universidad San Francisco de Quito, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales,
Calle Diego de Robles y Vía Interoceánica, Campus Cumbayá, Edif Darwin. Casilla Postal 17-1200-841, Quito, Ecuador.


[1] Carr, F.; Chill, D.; Maida, N. 2002. “The lactic acid bacteria: A literature survey”. Cr. Rev. Microbiol, 28: 281-370.

[2] Jin, Y.; Ai, H.; Cheng, J.; Wu, M. 2009. “First description of a novel Weissella species as an opportunistic pathogen for rainbow trout Oncorhynchus mykiss (Walbaum) in China”. Vet. Microbiol, 136: 314-320.

[3] Jashbhai, B.; Prajapati, M.; Baboo, M. 2008. “The history of fermented foods”. CRC Press Taylor & Francis Group. New York.

[4] Simango, C. 1997. “Potential use of traditional fermented foods for weaning in Zimbabwe”. Soc. Sci. Med, 44: 1065-1068.

[5] Gadaga, T.; Mutukumira, A.; Narvhus, J.; Feresu, S. 1999. “A review of traditional fermented foods and beverages of Zimbabwe”. Int. J. of Food Microbiol, 53: 1-11.

[6] Liong, M. 2008. “Safety of probiotics: Translocation and infection”. Nutr. Rev, 66: 192-202.

[7] Tamang, J. 2007. “Fermented foods for human life”. In Microbes for Human Life, International Publishing House Pvt. Limited.eds. New Delhi, India.

[8] Valyasevi, R.; Rolle, R. 2002. “An overview of small-scale food fermentation technologies in developing countries with special reference to Thailand: scope for their improvement”. Int. J. of Food Microbiol, 25: 231-239.

[9] Hassa’ine, O.; Zadi-Karam, H.; Karam, N. 2008. “Phenotypic identification and technological properties of lactic acid bacteria isolated from three breeds dromedary raw milks in south Algeria”. EJFA, 20: 46-59.

[10] Hill, S.; Gasson, M. 1986. “A qualitative screening procedure for the detection of casein hydrolysis by bacteria, using sodium dodecyl sulphate polyacrylamide gel electrophoresis”. J. Dairy Res, 53: 625-629.

[11] Laemmli, U.; Molbert, E.; Showe, M.; Kelenberger, E. 1970. “Form-determining function of genes required for the assembly of the head of bacteriophage T4”. J. Mol. Biol, 49: 99-113.

[12] Mayeux, J.; Sandine, W.; Elliker, P. 1962. “A selective medium for detecting Leuconostoc organisms in mixed isolate starter cultures”. J. Dairy Sci, 45: 655-656.

[13] Tagg, J.; McGiven, A. 1971. “Assay system for bacteriocins”. Appl. Microbiol, 21: 943.

[14] Pandey, G.; Yoshikawa, K.; Hirasawa, T.; Nagahisa, K.; Katakura, Y. 2007. “Extracting the hidden features in saline osmotic tolerance in Saccharomyces cerevisiae from DNA microarray data using the self-organizing map: Biosynthesis of amino acids”. Applied Microbiol. Biotechnol, 75: 415-426.

[15] Martin, F.; Philippot, L.; Hallet, S.; Chaussod, R.; Germon, J.; Soulas, G.; Catroux, G. 2001. “DNA extraction from soils: old bias for new microbial diversity analysis methods”. Appl. Environ. Microbiol, 67: 2354-2359.

[16] Bonfield, J.; Staden, R. 1996. “Experiment files and their application during large scale sequencing projects”. DNA Sequence, 6: 109-117.

[17] Thompson, J.; Higgins, D.; Gibson, T. 1994. “CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice”. Nucleic Acids Res, 22: 4673-4680.

[18] Kumar, S.; Tamura, K.; Nei, M. 2004. “MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment”. Brief Bioinform, 5: 150-163.

[19] Amoa-Awua, W.; Appoh, F.; Jakobsen, M. 1996. “Lactic acid fermentation of cassava dough into agbelima”. Int. J. of Food Microbiol, 31: 87-98.

[20] Ben Omar, N.; Ampe, F.; Raimbault, M.; Guyot, J.; Tailliez,P. 2000. “Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia)”. Syst. Appl. Microbiol, 23: 285-291.

[21] Ngaba, P.; Lee, J. 1979. “A research note: fermentation of cassava (Manihot esculenta Crantz)”. J. Food. Sci, 44: 1570-1571.

[22] Watabe, J.; Ikeda, N.; Mizutani, J.; Sato, N.; Jin, S.; Hirai, T.; Ariga, H. 1998. “Comparison of microbiological and chemical characteristics among types of traditionally fermented milk in Inner Mongolia in China and Calpis sour milk (Sannyuu)”. Milk Sci, 47: 1-7.

[23] Daeschel, M.; Andersson, R.; Fleming, H. 1987. “Microbial ecology of fermenting plant materials”. FEMS Microbiol. Rev, 46: 91-98.

[24] Kostinek, M.; Specht, I.; Edward, V; Pinto, C.; Egounlety, M.; Sossa, C.; Mbugua, S.; Dortu, C.; Thonart, P.; Taljaard, L.; Mengu, M.; Franz, M.; Holzapfel, W. 2007. “Characterization and biochemical properties of predominant lactic acid bacteria from fermenting cassava for selection as starter cultures”. Int. J. Food Microbiol, 114: 342-351.

[25] Cai, Y.; Ohmomo, S.; Ogawa, M.; Kumai, S. 1999. “Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage”. J. Dairy Sci, 82: 520-526.

[26] Rantsiou, K.; Urso, R.; Dolci, P.; Comi, G.; Cocolin, L. 2008. “Microflora of Feta cheese from four Greek manufacturers”. Int. J. of Food Microbiol, 126: 36-42.

[27] Tzanetakis, N.; Litopoulou-Tzanetaki, E. 1992. “Changes in numbers and kinds of lactic acid bacteria in Feta and Teleme, two Greek cheeses from Ewes’ milk”. J. of Dairy Sci, 75: 1389-1393.

[28] Everson, C.; Danner, W.; Hammes, P. 1970. “Bacterial starters in sausage products”. J. Agr. Food Chem, 18: 570-571.

[29] Everson, C.; Danner, W.; Hammes, P. 1970. “Improved starter culture for semidry sausage”. Food Tech, 24: 42-44.

[30] Beukes, E.; Bester, B.; Mostert, J. 2001. “The microbiology of South African traditional fermented milks”. Int. J. ofFoodMicrobiol, 63: 189-197.

[31] Bj’orkroth, K.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.; Korkeala, H.; Vandamme, P. 2002. “Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples”. Int. J. Syst. Evol. Micr, 52: 141-148.

[32] De Vuyst, L.; Vandamme, E. 1994. “Antimicrobial potential of lactic acid bacteria”. In Bacteriocins of Lactic Acid Bacteria. Blackie Academic and Professional. UK.

[33] Salama, M.; Musafija-Jeknic, T.; Sandine, W.; Giovannoni, S. 1995. “An ecological study of lactic acid bacteria: isolation of new strains of Lactococcus including Lactococcus lactis subspecies cremoris”. J. of Dairy Sci, 78: 1004-1017.

[34] Franz, C.; Holzapfel, W.; Stiles, M. 1999. “Enterococci at the crossroads of food safety”. Int. J. of Food Microbiol, 47: 1-24.

[35] Holzapfel, W. 1997. “Use of starter cultures in fermentation on a household scale”. Food Control, 8: 241-258.

[36] Axelsson, L. 1998. “Lactic acid bacteria: classification and physiology”. In Salminen, S. Von Wright, A. (Eds.). Lactic Acid Bacteria: Microbiology and Functional Aspects. Marcel Dekker. New York,: 19-54.

[37] Christensen, J.; Dudley, E.; Pederson, J.; Steelz, L. 1999. “Peptidases and amino acid catabolism in lactic acid bacteria”. Antonie van Leeuwenhoek, 76: 217-246.

[38] Bockelmann, W. 1995. “The proteolytic system of starter and non-starter bacteria: Components and their importance for cheese ripening”. Int. Dairy J, 5: 977-994.

[39] Sánchez-Marroquín, A.; Larios, C.; Vierna, L. 1967. “Estudios sobre la microbiología del pulque XIX. Elaboración de la bebida mediante cultivos puros”. Rev. Latinoam. Microbiol, 9: 83-85.

[40] Ulloa, M.; Herrera, T. 1976. “Estado actual del conocimiento sobre la microbiología de bebidas fermentadas indígenas de México: pozol, tesg’uino, pulque, colonche y tepache”. A. Inst. Biol. Mex, 47: 145-163.

[41] Kim, D.; Robyt, J. 2014. “Production, Selection and Characteristic of mutants of Leuconostoc mesenteroides B-742 constitutive for dextran”. Enzyme Microb. Tech, 17: 689-695.

[42] Daeschel, M.; McKenney, M.; McDonald, L. 1990. “Bacteriocidal activity of Lactobacillus plantarum C11”. Food Microbiol, 7: 91-98.

[43] West, C.; Warner, P. 1988. “Plantacin B, a bacteriocin produced by Lactobacillus plantarum NCDO 1193”. FEMS Microbiol. Lett, 49: 163-165.

[44] Atrih, A.; Rekhif, N.; Milliere, J.; Levebvre, G. 1993. “Detection and characterization of a bacteriocin produced by Lactobacillus plantarum C19”. Can. J. of Microbiol, 39: 1173-1179.

[45] Garriga, M.; Hugas, M.; Aymerich, T.; Monfort, J. 1993. “Bacteriocinogenic activity of lactobacilli from fermented sausages”. J. Appl. Bacteriol, 75: 142-148.

[46] Herbert, C. 1957. “Rice Fermentation in Ecuador”. Economic Botany, 11: 267-270.

[47] Van Veen, A.; Graham, D.; Steinkraus, K. 1968. “Fermented rice, a food from Ecuador”. Arch. Latinoam. Nutr, 18: 363.

[48] Papalexandratou, Z.; Falony, G.; Romanens, E.; Jimenez, J.; Amores, F.; Daniel, H.; De Vuyst, L. 2011. “Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations”. Appl. Environ. Microbiol, 77: 7698-7714.

Artículos más leídos del mismo autor/a