Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 6 No. 1 (2014)

Determination of the level of tolerance to salinity in <em>in vitro</em> conditions of the plants of tomate de &aacute;rbol (<em>Solanum betaceum</em>) from different localities of the ecuatorian highlands

DOI
https://doi.org/10.18272/aci.v6i1.158
Submitted
September 29, 2015
Published
2014-06-13

Abstract

Soil salinity constitutes one of the main causes for crop yield reduction. A significant part of the Ecuadorian highland soils are considered as high-salinity because of their pyroclastic nature, the effects of erosion and the poor use of irrigation water. The tree tomato (Solanum betaceum) grows all across the highlands and in many cases is subject to high-salinity stress. The objective of the present study was to determine the level of tolerance to sodium chloride (NaCl) for in vitro cultured tree tomato. Plants were obtained from seven or eight locations depending on the essay performed. Seed germination, plantlet development from simple-node culture and in vitro plant growth were evaluated, using different NaCl concentrations. For the seed germination assays, an average of 62% of germination was obtained in a concentration of 50mM NaCl for the seven locations evaluated, and an average of 57% germination in a concentration of 75mM. For plant growth from single node culture, seven locations were evaluated and growth was observed in concentrations of up to 100mM NaCl for plants from all locations except Quero. Finally, the analysis of salinity stress tolerance limits for plantlet growth showed different responses in individuals from eight sampling locations, where plantlets from Chaltura tolerated up to 175 mMNaCl. These results confirm a difference in salinity tolerance from individuals between locations. The highest tolerance level was observed in plants from Chaltura, while the lowest tolerance level was observed in plants from Quero. This information is basic for future transcriptome studies, where genes involved with salinity tolerance can be identify in this interesting Andean crop.

viewed = 1993 times

References

  1. Wang, W.; Vinocur, B.; Altman, A. 2003. "Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance". Planta, 18: 1-14.
  2. Fassbender, H.; Bornemisza, E. 1987. "Química de suelos con énfasis en suelos de América Latina". 2da Edición. San José, C.R.: IICA, 1994.
  3. Munns, R. 2005. "Genes and salt tolerance: bringing them together". New Phytologist, 167: 645-663.
  4. Brouwer, C.; Goffeau, A.; Heibloem, M. 1985. "Irrigation water management: Training Manual No. 1 - Introduction to Irrigation". FAO Corporate Document Repository <http://www.fao.org/docrep/R4082E/r4082e00.htm#Contents>.
  5. Prohens, J.; Nuez, F. 2000. "The Tamarillo (Cyphomandra betacea); A Review of a Promising Small Fruit Crop". Small Fruits Review, 1 (2).
  6. Feicán, C.; Encalada, C.; Larriva, W. 1999. "El Cultivo del Tomate de Árbol". Estación Chuquipata Granja Experimental Bullcay. INIAP. Cuenca.
  7. Murashige, T.; Skoog, F. 1962. "A revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures". Physiologia Plantarum, 15 (3): 473-497.
  8. Liu, X.; Baird, V 2003. "Differential Expression of Genes Regulated in Response to Drought or Salinity Stress in Sunflower". Crop Science, 43: 678-687.
  9. Nabors, M. 2006. "Introducción a la botánica". 1era Edición. Addison-Wisley Iberoamericana. Madrid-España.
  10. Padilla, W. 2007. "El suelo componente importante del ecosistema". Grupo Clínica Agrícola. Quito-Ecuador.
  11. Bagley, C.; Kotuby-Amacher, J.; Farrell-Poe, K. 2004. "Análisis de la Calidad del Agua para el Ganado". Estern Beef Resource Committee. Edición Español.
  12. Umezawa, T.; Sakurai, T.; Totoki, Y.; Toyoda, A.; Seki, M.; Ishiwata, A.; Akiyama, K.; Kurotani, A.; Yoshida, T.; Mochida, K.; Kasuga, M.; Todaka, D.; Maruyama, K.; Nakashima, K.; Enju, A.; Mizukado, S.; Ahmed, S.; Yoshiwara, K.; Harada, K.; Tsobokura, Y.; Hayashi, M.; Sato, S.; Anai, T.; Ishimoto, M.; Funatusuki, H.; Teraishi, M.; Osaki, M.; Shinano, T.; Akashi, R.; Sakaki, Y.; Yamaguchi-Shinozaki, K.; Shinozaki, K. 2008. "Sequencing and Analysis of Aproximately 40 000 soybean ADNc clones from a full-length-enriched ADNc Library". DNA Research, 15: 333-346.
  13. Aoki, K.; Yano, K.; Suzuki, A.; Kawamura, S.; Sakurai, N.; Suda, K.; Kurabayashi, A.; Suzuki, T.; Tsugane, T.; Watanabe, M.; Ooga, K.; Torii, M.; Narita, T.; Shin-I, T.; Kohara, Y.; Yamamoto, N.; Takahashi, H.; Watanabe, Y.; Egusa, M.; Kodama, M.; Ichinose, Y.; Kikuche, M.; Fukushima, S.; Okabe, A.; Arie, T.; Sato, Y.; Yazawa, K.; Satoh, S.; Omura, T.; Ezura, H.; Shibata, D. 2010. "Large-scale analysis of full-length ADNc from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics". BMC Genomics, 11: 210.
  14. Seeman, J.; Sharkey, T. 1986. "Salinity and Nitrogen Effects on Photosynthesis, Ribulose-1,5-Biphosphate Carboxylase and Metabolite Pool Sizes in Phaseolus vulgaris L". Plant Physiol, 82: 555-560.
  15. Dirección Nacional de Biodiversidad y Áreas Protegidas - Ministerio del Ambiente de la República del Ecuador. 2004. "Programa de acción nacional de lucha contra la desertificación y mitigación de la sequía". <http://www.unccd.int/ActionProgrammes/ecuador-spa2004.pdf>.
  16. Zebrowski, C. 1996. "Los suelos con cangahua en el Ecuador". Memorias del III Simposio Internacional sobre Suelos Volcánicos endurecidos. 128: 128-137.
  17. Barriga, S. 2003. "Diagnóstico de la Salinidad de los Suelos Cultivados en las Principales Áreas Bajo Riego en el Ecuador". Universidad Central del Ecuador. Tesis de Pregado. Quito.