Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 15 No. 2 (2023)

Analysis of the expression of the S-RNase gene in controlled crosses of Prunus serotina subsp. Capuli

DOI
https://doi.org/10.18272/aci.v15i2.2980
Submitted
May 12, 2023
Published
2023-11-09

Abstract

The capulí tree (Prunus serotina subsp. capuli) belongs to the Rosaceae family and is native to North America, although it is widely distributed in cold and temperate areas of South America, especially in Ecuador. Its fruit is a small berry of high commercial interest due to the therapeutic substances it contains, such as antioxidants, associated with the treatment of cardiovascular and inflammatory diseases. Both national producers and ancestral communities use it for the production of jams and fermented beverages and/or spirits. However, there are no agricultural crops established as such in Ecuador, so it is interesting to study their reproduction mechanisms in order to apply them in agricultural and reforestation programs. In species such as P. serotina, it is important to understand the GSI (gametophytic self-incompatibility) mechanism that has evolved in hermaphrodite flowers to avoid inbreeding and that implies a limitation for fruit production. GSI is controlled by the S Locus, consisting of the S-RNase gene (expressed in the pistil) and the SFB gene (expressed in the pollen). The dynamic between the two genes activates or deactivates certain proteins that influence the compatibility or incompatibility of a specific cross, functioning as a molecular complex like a lock and a key. This system prevents crosses between genetically related individuals from generating fruits, since it truncates the growth of pollen tubes, preventing them from reaching the ovary for fertilization. The objective of this research was to study the expression of the S-RNase gene in compatible and incompatible crosses of capuli. For this purpose, controlled pollinations were carried out, RNA was extracted and RT-qPCR was performed. With the Ct values obtained from the qPCRs, statistical analyses were performed to determine the significance of gene expression between compatible and incompatible crosses. The study was complemented with an analysis of pollen tube development in different crosses to understand the relationship with S-RNase gene expression. The results suggest that, in the case of capuli, a suppression of the GSI system may occur, causing crosses considered incompatible to act as compatible.

viewed = 253 times

References

  1. León, J. (2000). Fundamentos Botánicos de los Cultivos Tropicales. Instituto Interamericano de Cooperación para la Agricultura (IICA).
  2. Ramírez, F. y Davenport, T. (2016). The phenology of the capuli cherry [Prunus serotina subsp. capuli (Cav.) McVaugh] characterized by the BBCH scale, landmark stages and implications for urban forestry in Bogotá, Colombia. Urban Forestry & Urban Greening, 19, 202-211. doi: https://doi.org/10.1016/j.ufug.2016.06.028
  3. Málaga, R. et. al. (2009). Caracterización y evaluación de los recursos naturales de la microcuenca cunyatupe. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 12(23), 12-20. https://dialnet.unirioja.es/servlet/articulo?codigo=8135799
  4. Baños, K. (2017). Identificación y descripción de las características anatómicas de la madera de Prunus serotina (Capulí) procedente de tres provincias: Chimborazo, Tungurahua y Cotopaxi. Escuela Superior Politécnica de Chimborazo. http://dspace.espoch.edu.ec/handle/123456789/6683
  5. Cueva, C. (2019). Etnobotánica de las plantas medicinales del caserío Laguna San Nicolas. Universidad Nacional de Cajamarca
  6. Chucuri, J.J., Monteros, A., Borja, E.J. y Tapia B.C. (2013). Colecta y caracterización morfológica in situ de capulí (Prunus serótina Ehrh) del banco nacional de germopasma del INIAP-Ecuador. En J. Grijalva Olmedo, R. Ramos Veintimilla, R. Vera Vélez, P. Barrera Aguilar y F. Sigcha Morales (Eds.). Primer Encuentro Nacional de Bosques, Recursos Genéticos Forestales y Agroforestales: Memorias del Evento (pp. 144-150). INIAP, Estación Experimental Santa Catalina, Programa Nacional de Forestería. http://repositorio.iniap.gob.ec/handle/41000/928
  7. Zavala, D. et. al. (2006). Efecto citotóxico de Physalis peruviana (capulí) en cáncer de colon y leucemia mieloide crónica. Anales de la Facultad de Medicina, 67(4), 283-289. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832006000400002
  8. Torres, R. y Teves, F. (2011). Estudio comparativo de la actividad antioxidante in vitro de los extractos antociánicos y caracterización de las antocianidinas en los frutos de las especies vegetales Prunus serótina (capuli) [Tesis, Universidad Nacional de San Antonio de Cusco]. Repositorio Institucional Universidad Nacional de San Antonio de Cusco. http://hdl.handle.net/20.500.12918/1061
  9. Ruiz, S. (2018). Características farmacognósticas y cuantificación espectrofotométrica de antocianinas totales del fruto de Prunus serotina subsp. capuli (Cav.) McVaugh (Rosaceae) “capulí”. Arnaldoa, 25(3), 961-980. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S2413-32992018000300009
  10. Ruales Estupiñán, C. (2007). Estudios para la recuperación de la flora nativa en el valle de Tumbaco-Distrito Metropolitano de Quito: inventario florístico y ensayo de propagación vegetativa [Tesis de Máster, Universidad San Francisco de Quito USFQ]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/886
  11. Acosta, A. (2019). Caracterización carpológica de la especie de uso alimenticio Prunus serotina Kunth 1879 en la Zona Central de los Andes del Ecuador [Tesis de Pregrado, Escuela Superior Politécnica de Chimborazo]. DSpace ESPOCH. http://dspace.espoch.edu.ec/handle/123456789/12342
  12. Roalson, E. H. y McCubbin, A. G. (2003). S-RNases and sexual incompatibility: structure, functions, and evolutionary perspectives. Molecular phylogenetics and evolution, 29(3), 490-506. doi: https://doi.org/10.1016/S1055-7903(03)00195-7
  13. De Nettancourt, D. (2001). Incompatibility and incongruity in wild and cultivated plants. Springer Berlin, Heidelberg. doi: https://doi.org/10.1007/978-3-662-04502-2
  14. Yamane, H. y Tao, R. (2009). Molecular basis of self-(in) compatibility and current status of S-genotyping in Rosaceous fruit trees. Journal of the Japanese Society for Horticultural Science, 78(2), 137-157. doi: https://doi.org/10.2503/jjshs1.78.137
  15. Tao, R. y Iezzoni, A. F. (2010). The S-RNase-based gametophytic self-incompatibility system in Prunus exhibits distinct genetic and molecular features. Scientia Horticulturae, 124(4), 423-433. https://doi.org/10.1016/j.scienta.2010.01.025
  16. Hua, Z. H., Fields, A. y Kao, T. H. (2008). Biochemical models for S-RNase-based self-incompatibility. Molecular Plant, 1(4), 575-585. doi: https://doi.org/10.1093/mp/ssn032
  17. Wu, J., Gu, C., Khan, M. A., Wu, J., Gao, Y., Wang, C. y Zhang, S. (2013). Molecular determinants and mechanisms of gametophytic self-incompatibility in fruit trees of Rosaceae. Critical Reviews in Plant Sciences, 32(1), 53-68. doi: https://doi.org/10.1080/07352689.2012.715986
  18. McClure, B. (2009). Darwin’s foundation for investigating self-incompatibility and the progress toward a physiological model for S-RNase-based SI. Journal of experimental botany, 60(4), 1069-1081. doi: https://doi.org/10.1093/jxb/erp024
  19. Correa, L. (2018). Caracterización molecular y diseño de marcadores moleculares CAPS para el gen de la S-RNasa en Prunus serotina subsp. capuli [Tesis de Pregrado, Universidad San Francisco de Quito USFQ]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/7363
  20. Baquero Méndez, V. Y. (2018). Estudio preliminar fenotípico de la incompatibilidad gametofítica en capulí (Prunus serotina subsp. capuli) [Tesis de Pregrado, Universidad San Francisco de Quito USFQ]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/7782
  21. Asma, B. M. (2008). Determination of pollen viability, germination ratios and morphology of eight apricot genotypes. African Journal of Biotechnology, 7(23). https://www.ajol.info/index.php/ajb/article/view/59562
  22. Gambino, G., Perrone, I. y Gribaudo, I. (2008). A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical analysis, 19(6), 520-525. doi: https://doi.org/10.1002/pca.1078
  23. Gómez, E. M., Dicenta, F., Martínez-García, P. J. y Ortega, E. (2015). iTRAQ-based quantitative proteomic analysis of pistils and anthers from self-incompatible and self-compatible almonds with the S f haplotype. Molecular Breeding, 35(5), 1-14. https://link.springer.com/article/10.1007/s11032-015-0314-5
  24. Pazmiño Cajiao, M. A. (2018). Evaluación de crecimiento y expresión de genes relacionados a las rutas metabólicas del ácido jasmónico y ácido salicílico después de la aplicación de glifosato en Arabidopsis thaliana [Tesis de Pregrado, Universidad San Francisco de Quito USFQ]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/7533
  25. Gómez, E. M., Buti, M., Sargent, D. J., Dicenta, F. y Ortega, E. (2019). Transcriptomic analysis of pollen-pistil interactions in almond (Prunus dulcis) identifies candidate genes for components of gametophytic self-incompatibility. Tree Genetics & Genomes, 15(4), 1-13. https://link.springer.com/article/10.1007/s11295-019-1360-7
  26. Erazo García, M. P. (2019). Determinación de la producción de alcaloides y análisis de expresión de genes de defensa inducidos por metil jasmonato en semillas de chocho (Lupinus mutabilis sweet) [Tesis de Pregrado, Universidad San Francisco de Quito USFQ]. Repositorio Digital USFQ. http://repositorio.usfq.edu.ec/handle/23000/7800
  27. Molina Arias, M. (2017). ¿Qué significa realmente el valor de p? Pediatría Atención Primaria, 19(76), 377-381.
  28. Radičević, S., Cerović, R., Nikolić, D. y Đorđević, M. (2016). The effect of genotype and temperature on pollen tube growth and fertilization in sweet cherry (Prunus avium L.). Euphytica, 209(1), 121-136. doi: https://doi.org/10.1007/s10681-016-1645-y
  29. García-Valencia, L. E., Bravo-Alberto, C. E. y Cruz-García, F. (2013). Evitando el incesto en las plantas: control genético y bioquímico. TIP Revista Especializada en Ciencias Químico-Biológicas, 16(1), 57-65. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=42710
  30. Gordillo-Romero, M., Correa-Baus, L., Baquero-Méndez, V., de Lourdes Torres, M., Vintimilla, C., Tobar, J. y Torres, A. F. (2020). Gametophytic self-incompatibility in Andean capuli (Prunus serotina subsp. capuli): allelic diversity at the S-RNase locus influences normal pollen-tube formation during fertilization. PeerJ, 8, e9597. doi: https://doi.org/10.7717/peerj.9597
  31. Yamane, H., Tao, R., Sugiura, A., Hauck, N. R. y Iezzoni, A. F. (2001). Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). Journal of the American Society for Horticultural Science, 126(6), 661-667. doi: https://doi.org/10.21273/JASHS.126.6.661
  32. Hauck, N. R., Yamane, H., Tao, R. y Iezzoni, A. F. (2002). Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sexual Plant Reproduction, 15(1), 39-46. doi: https://doi.org/10.1007/s00497-002-0136-6
  33. Yi, W., Law, S. E., McCoy, D. y Wetzstein, H. Y. (2006). Stigma development and receptivity in almond (Prunus dulcis). Annals of Botany, 97(1), 57-63. doi: https://doi.org/10.1093/aob/mcj013
  34. Hedhly, A. (2003). Efecto de la temperatura sobre la fase reproductiva en cerezo (Prunus avium L.) [Tesis doctoral, Universidad de Lleida]. Digital CSIC. http://hdl.handle.net/10261/128750
  35. DeCeault, M. T. y Polito, V. S. (2008). High temperatures during bloom can inhibit pollen germination and tube growth, and adversely affect fruit set in the prunus domestica cultvars’improved french’and’muir beauty’. Acta Horticulturae 874(874), 163-168. https://www.researchgate.net/publication/284250781_High_temperatures_during_bloom_can_inhibit_pollen_germination_and_tube_growth_and_adversely_affect_fruit_set_in_the_Prunus_domestica_cultvars_’Improved_French’_and_’Muir_Beauty’
  36. Orlando Marchesano, B. M., Chiozzotto, R., Baccichet, I., Bassi, D. y Cirilli, M. (2022). Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes, 13(3), 548. doi: https://doi.org/10.3390/genes13030548
  37. Dongariyal, A., Dimri, D. C., Kumar, P., Choudhary, A., Jat, P. K., Basile, B. y Singh, A. (2022). Pollen-Pistil Interaction in Response to Pollination Variants in Subtropical Japanese Plum (Prunus salicina Lindl.) Varieties. Plants, 11(22), 3081. doi: https://doi.org/10.3390/plants11223081
  38. Sullivan, J. A., Shirasu, K. y Deng, X. W. (2003). The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nature Reviews Genetics, 4, 948-958. doi: https://doi.org/10.1038/nrg1228
  39. Tsukamoto, T., Ando, T., Kokubun, H., Watanabe, H., Sato, T., Masada, M. y Kao, T. H. (2003). Breakdown of selfincompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene. Sexual Plant Reproduction, 15(5), 255-263. doi: https://doi.org/10.1007/s00497-002-0161-5
  40. Hancock, C., Kent, L. y McClure, B. (2005). The stylar 120 kDa glycoprotein is required for S-specific pollen rejection in Nicotiana. The Plant Journal, 43, 716-723. doi: https://doi.org/10.1111/j.1365-313X.2005.02490.x
  41. Li, Y., Wu, J., Wu, C., Yu, J., Liu, C., Fan, W. y Li, W. (2020). A mutation near the active site of S-RNase causes selfcompatibility in S-RNase-based self-incompatible plants. Plant molecular biology, 103(1), 129-139. doi: https://doi.org/10.1007/s11103-020-00979-z
  42. Cardozo, T. y Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739-751. doi: https://doi.org/10.1038/nrm1471
  43. Sonneveld, T., Tobutt, K. R., Vaughan, S. P. y Robbins, T. P. (2005). Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype–specific F-Box gene. The Plant Cell, 17(1), 37-51. doi: https://doi.org/10.1105/tpc.104.026963
  44. Ahmad, M. H., Rao, M. J., Hu, J., Xu, Q., Liu, C., Cao, Z. y Chai, L. (2022). Systems and breakdown of self-incompatibility. Critical Reviews in Plant Sciences, 41(3), 209-239. doi: https://doi.org/10.1080/07352689.2022.2093085
  45. Cachi, A. M. (2011). Incompatibilidad polen-pistilo en cerezo (prunus avium l). Caracterización de nuevas fuentes de autocompatibilidad [Tesis, Universidad de Zaragoza]. Dialnet. https://dialnet.unirioja.es/servlet/tesis?codigo=204897
  46. Halász, J., Pedryc, A. y Hegedűs, A. (2007). Origin and dissemination of the pollen‐part mutated SC haplotype which confers self‐compatibility in apricot (Prunus armeniaca). New Phytologist, 176(4), 792-803. doi: https://doi.org/10.1111/j.1469-8137.2007.02220.x
  47. Kakui, H., Kato, M., Ushijima, K., Kitaguchi, M., Kato, S. y Sassa, H. (2011). Sequence divergence and loss‐of‐function phenotypes of S locus F‐box brothers genes are consistent with non‐self recognition by multiple pollen determinants in self‐incompatibility of Japanese pear (Pyrus pyrifolia). The Plant Journal, 68(6), 1028-1038. doi: https://doi.org/10.1111/j.1365-313X.2011.04752.x
  48. Gu, C., Wang, L., Korban, S. S. y Han, Y. (2015). Identification and characterization of S-RNase genes and S-genotypes in Prunus and Malus species. Canadian Journal of Plant Science, 95(2), 213-225. doi: https://doi.org/10.4141/cjps-2014-254
  49. Dongariyal, A., Dimri, D. C., Kumar, P., Choudhary, A., Jat, P. K., Basile, B., Mataffo, A. et al. (2022). Pollen-Pistil Interaction in Response to Pollination Variants in Subtropical Japanese Plum (Prunus salicina Lindl.) Varieties. Plants, 11(22), 3081.doi: http://dx.doi.org/10.3390/plants11223081
  50. Orlando Marchesano, B. M., Chiozzotto, R., Baccichet, I., Bassi, D. y Cirilli, M. (2022). Development of an HRMA-Based Marker Assisted Selection (MAS) Approach for Cost-Effective Genotyping of S and M Loci Controlling Self-Compatibility in Apricot (Prunus armeniaca L.). Genes, 13(3), 548. doi: http://dx.doi.org/10.3390/genes13030548