Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 14 No. 2 (2022)

Characterization of the banana (Musa × paradisiaca L.) microbiome under organic and conventional production systems

DOI
https://doi.org/10.18272/aci.v14i2.2298
Submitted
May 15, 2021
Published
2022-12-12

Abstract

Banana (Musa × paradisiaca L.) cultivation is one of the most important agricultural activities for many countries, and it is the primary fruit consume worldwide. Integrated soil management and fertilization programs aims to enhance soil fertility while maintaining crop yields. A large body of literature examined the changes in soil properties associated with different fertility regimens. Despite the critical role of the plant-associated microbiome in plant health and productivity, the effects of different agricultural management systems on microbial communities' response in banana are poorly understood.  This study reports the structure, diversity, and richness of the microbial community of the bulk soil, rhizosphere, and leaf of banana plants under organic and conventional management. Samples were obtained from two banana plantations located in the province of El Oro, Ecuador. The analysis was based on DNA sequencing of the V3-V4 region of the 16S rRNA gene for bacteria and the ITS2 region for fungi. Here, we found a significant effect of the management system in the bacterial and fungi community composition. In general terms, under a conventionally managed system, the richness and evenness of the bacterial and fungal community increased among the soil and rhizosphere compared to the organic farming system. Soil and rhizosphere under organic farming were associated with a higher relative abundance of Proteobacteria, Firmicutes, and Bacteroidetes and exhibited an overrepresentation of microbial genus know as plant growth-promoting, as well as genera involved in essential ecosystem processes. We also found that ASVs of the same genus respond differently to the two types of agricultural management on the soil and the rhizosphere. In comparison, the bacterial communities in the leaves were more similar in both types of management.  Understanding how long-term cropping management systems shift the microbial diversity and structure at the level of individual microbial taxa, such as presented in this research, can help to design farming systems that can maintain high profitability of the banana crops by stimulating growth-promoting bacteria and those responsible for the suppression of the soil-borne disease.

viewed = 1275 times

References

  1. FAO. (2017). El futuro de la alimentación y agricultura: tendencias y desafíos (I6881ES/1/02.17) http://www.fao.org/3/i6881s/i6881s.pdf
  2. Khush, G. (1999). Green revolution: preparing for the 21st century. Genome, 42(4), 646-655. doi: https://doi.org/10.1139/g99-044
  3. Paul, J., Choudhary, A., Suri, V., Sharma, A., Kumar, V. & Shobhna (2014). Bioresource nutrient recycling and its relationship with biofertility indicators of soil health and nutrient dynamics in rice-wheat cropping system. Communications in soil science and plant analysis, 45(7), 912-924. doi: https://doi.org/10.1080/00103624.2013.867051
  4. FAO. (2020). FAOSTAT. Recuperado el 11 abril del 2020, desde: http://www.fao.org/faostat/es/#data
  5. INEC. (2020). Encuesta de Superficie y Producción Agropecuaria Continua- ESPAC 2019. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2019/Presentacion%20de%20los%20principales%20resultados%20ESPAC%202019.pdf
  6. Marin, D., Romero, R., Guzmán, M & Sutton, T. (2003). Black Sigatoka: an increasing threat to banana cultivation. Plant disease, 87(3), 208-222. doi: https://doi.org/10.1094/PDIS.2003.87.3.208
  7. Arvanitoyannis, I. & Mavromatis, A. (2009). Banana cultivars, cultivation practices, and physicochemical properties. Critical Reviews in Food Science and Nutrition, 49(2), 113-135.doi: https://doi.org/10.1080/10408390701764344
  8. Gruber, N. y Galloway, J. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. doi: https://doi.org/10.1038/nature06592
  9. Yin, C., Fan, F., Song, A., Li, Z., Yu, W. & Liang, Y. (2014). Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community. European journal of soil biology, 65, 47-56. doi: https://doi.org/10.1016/j.ejsobi.2014.09.003
  10. Evenson, R. y Gollin, D. (2003). Assessing the impact of the Green Revolution, 1960 to 2000. science, 300(5620), 758-762.
  11. Oportunidades y desafíos del mercado internacional para el banano orgánico (2020, Agosto 12). Agrocalidad. https://www.agrocalidad.gob.ec/oportunidades-y-desafios-del-mercado-internacional-para-el-banano-organico/
  12. Bahram, M., Hildebrand, F., Forslund, S., Anderson, J., Soudzilovskaia, N., Bodegom, P., & Bork, P. (2018). Structure and function of the global topsoil microbiome. Nature, 560(7717), 233-237. doi: https://doi.org/10.1038/s41586-018-0386-6
  13. Bardgett, R. & Van Der Putten, W. (2014). Belowground biodiversity and ecosystem functioning. Nature, 515(7528), 505-511. doi: https://doi.org/10.1038/nature13855
  14. Pershina, E., Valkonen, J., Kurki, P., Ivanova, E., Chirak, E., Korvigo, I. & Andronov, E. (2015). Comparative analysis of prokaryotic communities associated with organic and conventional farming systems. PLoS One, 10(12). doi: https://doi.org/10.1371/journal.pone.0145072
  15. Bakker, M., Looft, T., Alt, D., Delate, K. & Cambardella, C. (2018). Bulk soil bacterial community structure and function respond to long-term organic and conventional agricultural management. Canadian journal of microbiology, 64(12), 901-914. doi: https://doi.org/10.1139/cjm-2018-0134
  16. Gamboa, M. A., Laureano, S., & Bayman, P. (2003). Measuring diversity of endophytic fungi in leaf fragments: does size matter?. Mycopathologia, 156(1), 41-45. doi: https://doi.org/10.1023/A:1021362217723
  17. Lu-Irving, P., HarenÄár, J., Sounart, H., Welles, S., Swope, S., Baltrus, D. & Dlugosch, K. (2019). Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. MSphere, 4(2). https://doi.org/10.1128/mSphere.00088-19
  18. Jiao, J., Wang, H., Zeng, Y., & Shen, Y. (2006). Enrichment for microbes living in association with plant tissues. Journal of Applied Microbiology, 100(4), 830-837. https://doi.org/10.1111/j.1365-2672.2006.02830.x
  19. Schmidt, J., Rodrigues, J., Brisson, V., Kent, A. & Gaudin, A. (2020). Impacts of directed evolution and soil management legacy on the maize rhizobiome. Soil Biology and Biochemistry, 145, 107794. doi: https://doi.org/10.1016/j.soilbio.2020.107794
  20. Finkel, O., Salas-González, I., Castrillo, G., Spaepen, S., Law, T., Teixeira, P., Jones, C., & Dangl, J. (2019). The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLOS Biology, 17(11), 1-34. https://doi.org/10.1371/journal.pbio.3000534
  21. Yourstone, S., Lundberg, D., Dangl, J., & Jones, C.2014). MT-Toolbox: improved amplicon sequencing using molecule tags. BMC bioinformatics, 15(1), 1-7. doi: https://doi.org/10.1186/1471-2105-15-284
  22. Joshi, N. & Sickle, F. (2011). No Title. A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files (Version 1.33). https://github.com/najoshi/sickle
  23. Callahan, B., McMurdie, P., Rosen, M., Han, A., Johnson, A., & Holmes, S. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
  24. Oksanen, J., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O"™hara, R. & Wagner, H. (2016). Vegan: Community Ecology Package. R Package Version. 2.0-10. CRAN. https://cran.r-project.org/soils FEMS microbiology ecology, 83(3), 607-621.
  25. Salas, I. (2019). isaisg/ochibi. Github. https://github.com/isaisg/ohchibi
  26. Chen, H. (2018). Package "VennDiagram". R Package Versión 1.6.20. CRAN. https://cran.r-project.org/
  27. Kolde, R. (2019). pheatmap: Pretty Heatmaps. R Package Version 1.0.12. CRAN. https://cran.r-project.org/
  28. Dos Santos, L. & Olivares, F. (2021). Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 100198. doi: https://doi.org/10.1016/j.cpb.2021.100198
  29. Schlaeppi, K. & Bulgarelli, D. (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions, 28(3), 212-217. doi: https://doi.org/10.1094/MPMI-10-14-0334-FI
  30. Trivedi, P., Leach, J, Tringe, S., Sa, T. & Singh, B. (2020). Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18(11), 607-621. doi: https://doi.org/10.1038/s41579-020-0412-1
  31. Longley, R., Noel, Z., Benucci, G., Chilvers, M., Trail, F. & Bonito, G. (2020). Crop Management Impacts the Soybean (Glycine max) Microbiome. Frontiers in Microbiology, 11, 1116. doi: https://doi.org/10.3389/fmicb.2020.01116
  32. Miura, T., Sánchez, R., Castañeda, L., Godoy, K. & Barbosa, O. (2019). Shared and unique features of bacterial communities in native forest and vineyard phyllosphere. Ecology and evolution, 9(6), 3295-3305. doi: https://doi.org/10.1002/ece3.4949
  33. Qu, Q., Zhang, Z., Peijnenburg, W., Liu, W., Lu, T., Hu, B. & Qian, H. (2020). Rhizosphere microbiome assembly and its impact on plant growth. Journal of agricultural and food chemistry, 68(18), 5024-5038. doi: https://doi.org/10.1021/acs.jafc.0c00073
  34. Sun, A., Jiao, X., Chen, Q., Wu, A., Zheng, Y., Lin, Y. & Hu, H. (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology and Biochemistry, 153, 108113. doi: https://doi.org/10.1016/j.soilbio.2020.108113
  35. Singh, U., Choudhary, A. & Sharma, S. (2020). Comparative performance of conservation agriculture vis-a-vis organic and conventional farming, in enhancing plant attributes and rhizospheric bacterial diversity in Cajanus cajan: A field study. European Journal of Soil Biology, 99, 103197. doi: https://doi.org/10.1016/j.ejsobi.2020.103197
  36. Lupatini, M., Korthals, G., de Hollander, M., Janssens, T., y Kuramae, E. (2017). Soil microbiome is more heterogeneous in organic than in conventional farming system. Frontiers in microbiology, 7, 2064. doi: https://doi.org/10.3389/fmicb.2016.02064
  37. Hartmann, M., Frey, B., Mayer, J., Mäder, P. & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME journal, 9(5), 1177-1194. doi: https://doi.org/10.1038/ismej.2014.210
  38. Zhang, J., Bei, S., Li, B., Zhang, J., Christie, P. & Li, X. (2019). Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Applied Soil Ecology, 136, 67-79. doi: https://doi.org/10.1016/j.apsoil.2018.12.017
  39. Zhang, M., Zhang, X., Zhang, L., Zeng, L., Liu, Y., Wang, X. & Ai, C. (2021). The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition. Geoderma, 382, 114752. doi: https://doi.org/10.1016/j.geoderma.2020.114752
  40. Peruzzi, E., Franke-Whittle, I. H., Kelderer, M., Ciavatta, C. y Insam, H. (2017). Microbial indication of soil health in apple orchards affected by replant disease. Applied Soil Ecology, 119, 115-127. doi: https://doi.org/10.1016/j.apsoil.2017.06.003
  41. Lupatini, M., Korthals, G., Roesch, L., & Kuramae, E. (2019). Long-term farming systems modulate multi-trophic responses. Science of the Total Environment, 646, 480-490. doi: https://doi.org/10.1016/j.scitotenv.2018.07.323
  42. Aparna, K., Pasha, M., Rao, D. & Krishnaraj, P. (2014). Organic amendments as ecosystem engineers: microbial, biochemical and genomic evidence of soil health improvement in a tropical arid zone field site. Ecological engineering, 71, 268-277. doi: https://doi.org/10.1016/j.ecoleng.2014.07.016
  43. Bengtsson, J., Ahnström, J. & Weibull, A. (2005). The effects of organic agriculture on biodiversity and abundance: a meta"analysis. Journal of applied ecology, 42(2), 261-269. doi: https://doi.org/10.1111/j.1365-2664.2005.01005.x
  44. Tian, W., Wang, L., Li, Y., Zhuang, K., Li, G., Zhang, J.& Xi, Y. (2015). Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture, Ecosystems & Environment, 213, 219-227. doi: https://doi.org/10.1016/j.agee.2015.08.009
  45. Tian, W., Zhang, Z., Hu, X., Tian, R., Zhang, J., Xiao, X., & Xi, Y. (2015). Short-term changes in total heavy metal concentration and bacterial community composition after replicated and heavy application of pig manure-based compost in an organic vegetable production system. Biology and Fertility of Soils, 51(5), 593-603. doi: https://doi.org/10.1007/s00374-015-1005-4
  46. Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an ecological classification of soil bacteria. Ecology, 88(6), 1354-1364. doi: https://doi.org/10.1890/05-1839
  47. Navarrete, A., Kuramae, E., de Hollander, M., Pijl, A., van Veen, J., & Tsai, S. M. (2013). Acidobacterial community responses to agricultural management of soybean in Amazon forest, 83 (3), 607-621. doi: https://doi.org/10.1111/1574-6941.12018
  48. Bonanomi, G., De Filippis, F., Cesarano, G., La Storia, A., Ercolini, D. & Scala, F. (2016). Organic farming induces changes in soil microbiota that affect agro-ecosystem functions. Soil Biology and Biochemistry, 103, 327-336. doi: https://doi.org/10.1016/j.soilbio.2016.09.005
  49. Banerjee, S., Kirkby, C., Schmutter, D., Bissett, A., Kirkegaard, J. & Richardson, A. (2016). Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188-198. doi: https://doi.org/10.1016/j. soilbio.2016.03.017
  50. Kalam, S., Basu, A., Ahmad, I., Sayyed, R.., El Enshasy, H., Dailin, D. & Suriani, N. (2020). Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Frontiers in Microbiology, 11, 2712. doi: https://doi.org/10.3389/fmicb.2020.580024
  51. Touceda, M., Brader, G., Antonielli, L., Ravindran, V., Waldner, G., Friesl-Hanl, W. & Sessitsch, A. (2015). Combined amendment of immobilizers and the plant growth-promoting strain Burkholderia phytofirmans PsJN favours plant growth and reduces heavy metal uptake. Soil Biology and Biochemistry, 91, 140-150. doi: https://doi.org/10.1016/j.soilbio.2015.08.038
  52. Teng, Y., Wang, X., Li, L., Li, Z., & Luo, Y. (2015). Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Frontiers in plant science, 6, 32. doi: https://doi.org/10.3389/fpls.2015.00032
  53. Ma, L., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F. & Kazan, K. (2013). Fusarium pathogenomics. Annual review of microbiology, 67, 399-416. doi: https://doi.org/10.1146/annurev-micro-092412-155650
  54. Wakelin, S., Warren, R., Harvey, P. & Ryder, M. (2004). Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biology and Fertility of Soils, 40(1), 36-43. doi: https://doi.org/10.1007/s00374-004-0750-6
  55. Amaresan, N., Kumar, M., Annapurna, K., Kumar, K. & Sankaranarayanan, A. (Eds.). (2020). Beneficial Microbes in Agro-Ecology: Bacteria and Fungi. Estados Unidos: Elsevier. Recuperado de: https://www.elsevier.com/books-and-journals/book-series