Caracterización del microbioma foliar de banano y su variación en presencia del patógeno Sigatoka Negra (Pseudocercospora fijiensis)

Contenido principal del artículo

Alejandra Paladines-Montero
Antonio León-Reyes
Dario X Ramirez-Villacis
Claudia G. Zapata-Ramón

Resumen

Se describe el microbioma bacteriano y fúngico de la hoja de banano (Musa x paradisiaca) en estado sano y necrótico de la enfermedad Sigatoka Negra (Pseudocercospora fijiensis), evaluando manejos agronómicos orgánico y convencional en la provincia de El Oro, Ecuador. Las muestras recolectadas se sometieron a secuenciamiento de ADN y análisis en las regiones 16S (V3-V4) e ITS. Se encontró que el microbioma fúngico de las hojas de banano del cultivo orgánico disminuye su diversidad en presencia del patógeno, mientras que en el sistema convencional la diversidad aumenta. Además, se describe un ASV del género Pseudomonas sp. incrementado en la hoja sana orgánica, asociado al clado de Pseudomonas fluorescens, un microorganismo benéfico para las plantas. El microbioma endófito presente en la filósfera del banano depende del sistema de cultivo y la presencia del patógeno cambia significativamente la composición microbiana.


Palabras clave: necrótico, secuenciamiento, diversidad, ASV, filósfera

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
Paladines-Montero, A., León-Reyes, A., Ramirez-Villacis, D. X., & Zapata-Ramón, C. G. (2022). Caracterización del microbioma foliar de banano y su variación en presencia del patógeno Sigatoka Negra (Pseudocercospora fijiensis). ACI Avances En Ciencias E Ingenierías, 14(1). https://doi.org/10.18272/aci.v14i1.2299
Sección
SECCIÓN B: CIENCIAS BIOLÓGICAS Y AMBIENTALES
Biografía del autor/a

Antonio León-Reyes, Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingeniería-Agronomía, Quito, Ecuador; Laboratorio de Biotecnología Agrícola y de Alimentos

B.Sc. en Ingeniería en Agroempresas y Química, Universidad San Francisco de Quito. M.Sc. en Fitomejoramiento de Plantas y Manejo de Recursos Genéticos, Universidad Wageningen (Países Bajos). Ph.D. en Biología Molecular de Plantas en la reconocida Utrecht University (Países Bajos). Su experiencia laboral inicia en Ecuador en el año 1997 como asistente de laboratorio de análisis físico-químico de suelos. En campo desarrolló su experiencia en plantaciones de flores como jefe de poscosecha de rosas, jefe de producción de flores de verano, lirios asiáticos y orientales, jefe del departamento de fitomejoramiento de cartuchos de colores (Zantedeschia), y como investigador en Leiden University, Holanda, Gent University, Bélgica, y en la Universidad San Francisco de Quito, Ecuador. Docente de la Escuela Politécnica del Ejército ESPE, Universidad Central del Ecuador, Utrecht University de Holanda, y actualmente como Profesor Investigador en la carrera de Agronomía donde enseña sobre Biotecnología, Fisiología vegetal, Floricultura, Manejo Poscosecha y Microbiología Agrícola. Ha participado en importantes conferencias como la de la APS (American Phytopathological Society) en Estados Unidos, y congresos y presentaciones en Escocia, Australia, China, Holanda, Alemania, Ecuador, Bélgica, Inglaterra, entre otras. Ha realizado publicaciones para medios internacionales y nacionales. Sus líneas de investigación son el fortalecimiento del sistema inmunológico vegetal mediante el uso de inductores de resistencia y una adecuada nutrición mineral de la base para levantar la autodefensa vegetal. Hay varias clases y tipos de inductores de resistencia, pero lamentablemente muy pocos han sido caracterizados e investigados según su respuesta metabólica y su tiempo de protección/duración frente al stress biótico o abiótico. Elementos de inmunidad vegetal e inductores de resistencia usados en varios cultivos, así estudios sobre como la nutrición influye en la defensa vegetal serán importantes para el desarrollo de estrategias para el control de plagas y enfermedades. Ha publicado en numerosas revistas internacionales de alto factor de impacto como Plant Cell, Plant Physiology, Nature Chemical Biology, Annual review of Cell and Developmental Biology, MPMI, Planta, etc.

Dario X Ramirez-Villacis, Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingeniería-Agronomía, Quito, Ecuador; Laboratorio de Biotecnología Agrícola y de Alimentos.

Ingeniero en Procesos Biotecnológicos y Máster en Microbiología de la Universidad San Francisco de Quito (Ecuador). Candidato a PhD en Biología Ambiental de la Universidad de Utrecht (Países Bajos) en el grupo de investigación de Interacción Planta-Microbio. Actualmente se desempeña como investigador asociado al Departamento de Ecología Microbioma del Instituto de Ecología de los Países Bajos (NIOO-KNAW), el Departamento de Biología de la Universidad de Carolina del Norte en Chapel Hill y del Laboratorio de Biotecnología Agrícola y de la Alimentos de la Universidad San Francisco de Quito USFQ. Su investigación se centra en entender los mecanismos por el cual las plantas reclutan microorganismos y como la composición del microbioma puede alterar el fenotipo de la planta, sobre todo para la resiliencia a estreses bióticos y abióticos.

Citas

[1] Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. y Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 18(11), 607–621. doi: https://doi.org/10.1038/s41579-020-0412-1

[2] Liu, H., Brettell, L. E. y Singh, B. (2020). Linking the Phyllosphere Microbiome to Plant Health. Trends in Plant Science, 25(9), 841–844. doi: https://doi.org/10.1016/j.tplants.2020.06.003

[3] Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828–840. doi: https://doi.org/10.1038/nrmicro2910

[4] Marchesi, J. R. y Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 31(3). doi: https://doi.org/10.1186/s40168-015-0094-5

[5] Kim, M., Singh, D., Lai-Hoe, A., Go, R., Rahim, R. A., Ainuddin, A. N., Chun, J. y Adams, J. M. (2012). Distinctive Phyllosphere Bacterial Communities in Tropical Trees. Microbial Ecology, 63(3), 674–681. doi: https://doi.org/10.1007/s00248-011-9953-1

[6] Humphrey, P. T. y Whiteman, N. K. (2020). Insect herbivory reshapes a native leaf microbiome. Nature Ecology and Evolution, 4(2), 221–229. doi: https://doi.org/10.1038/s41559-019-1085-x

[7] Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J. y Schenk, P. M. (2017). Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8(DEC), 1–17. doi: https://doi.org/10.3389/fmicb.2017.02552

[8] Bodenhausen, N., Somerville, V., Desirò, A., Walser, J. C., Borghi, L., Van Der Heijden, M. G. A. y Schlaeppi, K. (2019). Petunia- And Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes Journal, 3(2), 112–124. doi: https://doi.org/10.1094/PBIOMES-12-18-0057-R

[9] Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., De Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P., Jones, C. D., Paz-Ares, J. y Dangl, J. L. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513–518. doi: https://doi.org/10.1038/nature21417

[10] Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Peñuelas, J., Qian, H. y Zhu, Y. G. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 6(1), 1–12. doi: https://doi.org/10.1186/s40168-018-0615-0

[11] Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., Kwon, S. K., Crusemann, M., Bok Lee, Y., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. y Kwak, Y. S. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 10(1), 119–129. doi: https://doi.org/10.1038/ismej.2015.95

[12] Rastogi, G., Coaker, G. L. y Leveau, J. H. J. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiology Letters, 348(1), 1–10. doi: https://doi.org/10.1111/1574-6968.12225

[13] Fitzpatrick, C. R., Mustafa, Z. y Viliunas, J. (2019). Soil microbes alter plant fitness under competition and drought. Journal of Evolutionary Biology, 32(5), 438–450. doi: https://doi.org/10.1111/jeb.13426

[14] Eida, A. A., Ziegler, M., Lafi, F. F., Michell, C. T., Voolstra, C. R., Hirt, H. y Saad, M. M. (2018). Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 13(12), 1–20. https://doi.org/10.1371/journal.pone.0208223

[15] Lei, L. (2020). Phyllosphere dysbiosis. Nature Plants, 6(5), 434. doi: https://doi.org/10.1038/s41477-020-0674-7

[16] Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng, Y., Zhang, L., Wang, N., Wang, E., Xin, X. F. y He, S. Y. (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 580(7805), 653–657. doi: https://doi.org/10.1038/s41586-020-2185-0

[17] Purahong, W., Orrù, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., Michelotti, V., Tacconi, G. y Spinelli, F. (2018). Plant microbiome and its link to plant health: Host species, organs and pseudomonas syringae pv. Actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Frontiers in Plant Science, 871(November), 1–16. doi: https://doi.org/10.3389/fpls.2018.01563

[18] Smets, W. y Koskella, B. (2020). Microbiome: Insect Herbivory Drives Plant Phyllosphere Dysbiosis. Current Biology, 30(9), R412–R414. https://doi.org/10.1016/j.cub.2020.03.039

[19] Li, P., Xu, J., Wang, Z. y Li, H. (2020). Phyllosphere Microbiome in Response to Citrus Melanose. 1–26. doi: https://doi.org/10.21203/rs.3.rs-51076/v1

[20] Evans, E. y Ballen, F. (2018). Banana Market. University of Florida. IFAS Extension, 1–9. http://edis.ifas.ufl.edu/pdffiles/FE/FE90100.pdf

[21] Churchill, A. C. L. (2011). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular Plant Pathology, 12(4), 307–328. doi: https://doi.org/10.1111/j.1364-3703.2010.00672.x

[22] Manzo-Sánchez, G., Orozco-Santos, M., Islas-Flores, I., Martínez-Bolaños, L., Guzmán-González, S., Leopardi-Verde, C. L. y Canto-Canché, B. (2019). Genetic variability of Pseudocercospora fijiensis, the black Sigatoka pathogen of banana (Musa spp.) in Mexico. Plant Pathology, 68(3), 513–522. doi: https://doi.org/10.1111/ppa.12965

[23] Kimunye, J. N., Muzhinji, N., Mostert, D., Viljoen, A., van der Merwe, A. E. y Mahuku, G. (2020). Genetic Diversity and Mating Type Distribution of Pseudocercospora fijiensis on Banana in Uganda and Tanzania. Phytopathology®. doi: https://doi.org/10.1094/PHYTO-04-20-0138-R

[24] Lu-Irving, P., Harenčár, J. G., Sounart, H., Welles, S. R., Swope, S. M., Baltrus, D. A. y Dlugosch, K. M. (2019). Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. MSphere, 4(2). doi: https://doi.org/10.1128/mSphere.00088-19

[25] Jiao, J.-Y., Wang, H.-X., Zeng, Y. y Shen, Y.-M. (2006). Enrichment for microbes living in association with plant tissues. Journal of Applied Microbiology, 100(4), 830–837. doi: https://doi.org/10.1111/j.1365-2672.2006.02830.x

[26] Finkel, O. M., Salas-González, I., Castrillo, G., Spaepen, S., Law, T. F., Teixeira, P. J. P. L., Jones, C. D., y Dangl, J. L. (2019). The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLOS Biology, 17(11), 1–34. https://doi.org/10.1371/journal.pbio.3000534

[27] Yourstone, S.M., Lundberg, D.S., Dangl, J.L. y Jones, C.D. (2014). MT-Toolbox: improved amplicon sequencing using molecule tags. BMC Bioinformatics, 15. doi: https://doi.org/10.1186/1471-2105-15-284

[28] Joshi, N. y Sickle, F. (2011). No Title. A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files (Version 1.33). https://github.com/najoshi/sickle

[29] Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. y Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi: https://doi.org/10.1038/nmeth.3869

[30] Prodan, A., Tremroli, V., Brolin, H., Zwinderman, A., Nieuwdrop. M. y Levin, E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 15(1): e0227434. doi: https://doi.org/10.1371/journal.pone.0227434

[31] Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. y Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541. doi: https://doi.org/10.1128/AEM.01541-09

[32] Gu, Z. (2020). ComplexHeatmap Complete Reference. ComplexHeatmap Complete Reference. https://jokergoo.github.io/ComplexHeatmap-reference/book/

[33] Kolde, R. (2019). pheatmap: Pretty Heatmaps. Pheatmap: Pretty Heatmaps. https://cran.r-project.org/web/packages/pheatmap/index.html

[34] Adhikari, A., Nandi, S., Bhattacharya, I., Roy, M. De, Mandal, T. y Dutta, S. (2015). Phylogenetic analysis based evolutionary study of 16S rRNA in known Pseudomonas sp. Bioinformation, 11(10), 474–480. doi: https://doi.org/10.6026/97320630011474

[35] Perazzolli, M., Antonielli, L., Storari, M., Puopolo, G., Pancher, M., Giovannini, O., Pindo, M. y Pertot, I. (2014). Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Applied and Environmental Microbiology, 80(12), 3585–3596. doi: https://doi.org/10.1128/AEM.00415-14

[36] Gdanetz, K. y Trail, F. (2017). The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes Journal, 1(3), 158–168. doi: https://doi.org/10.1094/PBIOMES-05-17-0023-R

[37] Wagner, M. R., Busby, P. E. y Balint-Kurti, P. (2020). Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytologist, 225(5), 2152–2165. doi: https://doi.org/10.1111/nph.16284

[38] Griffiths, S. M., Galambao, M., Rowntree, J., Goodhead, I., Hall, J., O’Brien, D., Atkinson, N. y Antwis, R. E. (2020). Complex associations between cross-kingdom microbial endophytes and host genotype in ash dieback disease dynamics. Journal of Ecology, 108(1), 291–309. doi: https://doi.org/10.1111/1365-2745.13302

[39] Luo, L., Zhang, Z., Wang, P., Han, Y., Jin, D., Su, P., Tan, X., Zhang, D., Muhammad-Rizwan, H., Lu, X. y Liu, Y. (2019). Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express, 9(1). doi: https://doi.org/10.1186/s13568-019-0800-y

[40] Zhang, Z., Kong, X., Jin, D., Yu, H., Zhu, X., Su, X., Wang, P., Zhang, R., Jia, M. y Deng, Y. (2019). Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew. Archives of Microbiology, 201(8), 1099–1109. https://doi.org/10.1007/s00203-019-01683-3

[41] Zhang, Z., Luo, L., Tan, X., Kong, X., Yang, J., Wang, D., Zhang, D., Jin, D., y Liu, Y. (2018). Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere. PeerJ, 2018(4), 1–16. doi: https://doi.org/10.7717/peerj.4559

[42] Hesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T. y Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142–2159. doi: https://doi.org/10.1111/1462-2920.14130

[43] Katagiri, F., Thilmony, R. y He, S. Y. (2002). The Arabidopsis thaliana-pseudomonas syringae interaction. The Arabidopsis Book, 1, e0039. doi: https://doi.org/10.1199/tab.0039

[44] Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., & Samiyappan, R. (2014). Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl, 59, 345-355. doi: https://doi.org/10.1007/s10526-014-9569-8

[45] Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C. y Mercado-Blanco, J. (2019). Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 10, 616. doi: https://doi.org/10.3389/fmicb.2019.00616

[46] Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T. y Samiyappan, R. (2011). Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biological Control, 57(3), 175–183. doi: https://doi.org/10.1016/j.biocontrol.2011.02.010