Caracterización del microbioma foliar de banano y su variación en presencia del patógeno Sigatoka Negra (Pseudocercospora fijiensis)
Contenido principal del artículo
Resumen
Se describe el microbioma bacteriano y fúngico de la hoja de banano (Musa x paradisiaca) en estado sano y necrótico de la enfermedad Sigatoka Negra (Pseudocercospora fijiensis), evaluando manejos agronómicos orgánico y convencional en la provincia de El Oro, Ecuador. Las muestras recolectadas se sometieron a secuenciamiento de ADN y análisis en las regiones 16S (V3-V4) e ITS. Se encontró que el microbioma fúngico de las hojas de banano del cultivo orgánico disminuye su diversidad en presencia del patógeno, mientras que en el sistema convencional la diversidad aumenta. Además, se describe un ASV del género Pseudomonas sp. incrementado en la hoja sana orgánica, asociado al clado de Pseudomonas fluorescens, un microorganismo benéfico para las plantas. El microbioma endófito presente en la filósfera del banano depende del sistema de cultivo y la presencia del patógeno cambia significativamente la composición microbiana.
Palabras clave: necrótico, secuenciamiento, diversidad, ASV, filósfera
Descargas
Metrics
Detalles del artículo

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Los autores que publiquen en la revista ACI Avances en Ciencias e Ingenierías aceptan los siguientes términos:
- Los autores conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, la cual estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada, pudiendo de esa forma publicarla en un volumen monográfico o reproducirla de otras formas, siempre que se indique la publicación inicial en esta revista.
- Se permite y se recomienda a los autores difundir su obra a través de Internet:
- Antes del envío a la revista, los autores pueden depositar el manuscrito en archivos/repositorios de pre-publicaciones (preprint servers/repositories), incluyendo arXiv, bioRxiv, figshare, PeerJ Preprints, SSRN, entre otros, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada (Véase El efecto del acceso abierto).
- Después del envío, se recomiendo que los autores depositen su artículo en su repositorio institucional, página web personal, o red social científica (como Zenodo, ResearchGate o Academia.edu).
Citas
[2] Liu, H., Brettell, L. E. y Singh, B. (2020). Linking the Phyllosphere Microbiome to Plant Health. Trends in Plant Science, 25(9), 841–844. doi: https://doi.org/10.1016/j.tplants.2020.06.003
[3] Vorholt, J. A. (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12), 828–840. doi: https://doi.org/10.1038/nrmicro2910
[4] Marchesi, J. R. y Ravel, J. (2015). The vocabulary of microbiome research: a proposal. Microbiome, 31(3). doi: https://doi.org/10.1186/s40168-015-0094-5
[5] Kim, M., Singh, D., Lai-Hoe, A., Go, R., Rahim, R. A., Ainuddin, A. N., Chun, J. y Adams, J. M. (2012). Distinctive Phyllosphere Bacterial Communities in Tropical Trees. Microbial Ecology, 63(3), 674–681. doi: https://doi.org/10.1007/s00248-011-9953-1
[6] Humphrey, P. T. y Whiteman, N. K. (2020). Insect herbivory reshapes a native leaf microbiome. Nature Ecology and Evolution, 4(2), 221–229. doi: https://doi.org/10.1038/s41559-019-1085-x
[7] Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J. y Schenk, P. M. (2017). Inner plant values: Diversity, colonization and benefits from endophytic bacteria. Frontiers in Microbiology, 8(DEC), 1–17. doi: https://doi.org/10.3389/fmicb.2017.02552
[8] Bodenhausen, N., Somerville, V., Desirò, A., Walser, J. C., Borghi, L., Van Der Heijden, M. G. A. y Schlaeppi, K. (2019). Petunia- And Arabidopsis-specific root microbiota responses to phosphate supplementation. Phytobiomes Journal, 3(2), 112–124. doi: https://doi.org/10.1094/PBIOMES-12-18-0057-R
[9] Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., De Lorenzo, L., Feltcher, M. E., Finkel, O. M., Breakfield, N. W., Mieczkowski, P., Jones, C. D., Paz-Ares, J. y Dangl, J. L. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature, 543(7646), 513–518. doi: https://doi.org/10.1038/nature21417
[10] Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Peñuelas, J., Qian, H. y Zhu, Y. G. (2018). Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome, 6(1), 1–12. doi: https://doi.org/10.1186/s40168-018-0615-0
[11] Cha, J. Y., Han, S., Hong, H. J., Cho, H., Kim, D., Kwon, Y., Kwon, S. K., Crusemann, M., Bok Lee, Y., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. y Kwak, Y. S. (2016). Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME Journal, 10(1), 119–129. doi: https://doi.org/10.1038/ismej.2015.95
[12] Rastogi, G., Coaker, G. L. y Leveau, J. H. J. (2013). New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiology Letters, 348(1), 1–10. doi: https://doi.org/10.1111/1574-6968.12225
[13] Fitzpatrick, C. R., Mustafa, Z. y Viliunas, J. (2019). Soil microbes alter plant fitness under competition and drought. Journal of Evolutionary Biology, 32(5), 438–450. doi: https://doi.org/10.1111/jeb.13426
[14] Eida, A. A., Ziegler, M., Lafi, F. F., Michell, C. T., Voolstra, C. R., Hirt, H. y Saad, M. M. (2018). Desert plant bacteria reveal host influence and beneficial plant growth properties. PLoS ONE, 13(12), 1–20. https://doi.org/10.1371/journal.pone.0208223
[15] Lei, L. (2020). Phyllosphere dysbiosis. Nature Plants, 6(5), 434. doi: https://doi.org/10.1038/s41477-020-0674-7
[16] Chen, T., Nomura, K., Wang, X., Sohrabi, R., Xu, J., Yao, L., Paasch, B. C., Ma, L., Kremer, J., Cheng, Y., Zhang, L., Wang, N., Wang, E., Xin, X. F. y He, S. Y. (2020). A plant genetic network for preventing dysbiosis in the phyllosphere. Nature, 580(7805), 653–657. doi: https://doi.org/10.1038/s41586-020-2185-0
[17] Purahong, W., Orrù, L., Donati, I., Perpetuini, G., Cellini, A., Lamontanara, A., Michelotti, V., Tacconi, G. y Spinelli, F. (2018). Plant microbiome and its link to plant health: Host species, organs and pseudomonas syringae pv. Actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Frontiers in Plant Science, 871(November), 1–16. doi: https://doi.org/10.3389/fpls.2018.01563
[18] Smets, W. y Koskella, B. (2020). Microbiome: Insect Herbivory Drives Plant Phyllosphere Dysbiosis. Current Biology, 30(9), R412–R414. https://doi.org/10.1016/j.cub.2020.03.039
[19] Li, P., Xu, J., Wang, Z. y Li, H. (2020). Phyllosphere Microbiome in Response to Citrus Melanose. 1–26. doi: https://doi.org/10.21203/rs.3.rs-51076/v1
[20] Evans, E. y Ballen, F. (2018). Banana Market. University of Florida. IFAS Extension, 1–9. http://edis.ifas.ufl.edu/pdffiles/FE/FE90100.pdf
[21] Churchill, A. C. L. (2011). Mycosphaerella fijiensis, the black leaf streak pathogen of banana: progress towards understanding pathogen biology and detection, disease development, and the challenges of control. Molecular Plant Pathology, 12(4), 307–328. doi: https://doi.org/10.1111/j.1364-3703.2010.00672.x
[22] Manzo-Sánchez, G., Orozco-Santos, M., Islas-Flores, I., Martínez-Bolaños, L., Guzmán-González, S., Leopardi-Verde, C. L. y Canto-Canché, B. (2019). Genetic variability of Pseudocercospora fijiensis, the black Sigatoka pathogen of banana (Musa spp.) in Mexico. Plant Pathology, 68(3), 513–522. doi: https://doi.org/10.1111/ppa.12965
[23] Kimunye, J. N., Muzhinji, N., Mostert, D., Viljoen, A., van der Merwe, A. E. y Mahuku, G. (2020). Genetic Diversity and Mating Type Distribution of Pseudocercospora fijiensis on Banana in Uganda and Tanzania. Phytopathology®. doi: https://doi.org/10.1094/PHYTO-04-20-0138-R
[24] Lu-Irving, P., Harenčár, J. G., Sounart, H., Welles, S. R., Swope, S. M., Baltrus, D. A. y Dlugosch, K. M. (2019). Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. MSphere, 4(2). doi: https://doi.org/10.1128/mSphere.00088-19
[25] Jiao, J.-Y., Wang, H.-X., Zeng, Y. y Shen, Y.-M. (2006). Enrichment for microbes living in association with plant tissues. Journal of Applied Microbiology, 100(4), 830–837. doi: https://doi.org/10.1111/j.1365-2672.2006.02830.x
[26] Finkel, O. M., Salas-González, I., Castrillo, G., Spaepen, S., Law, T. F., Teixeira, P. J. P. L., Jones, C. D., y Dangl, J. L. (2019). The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLOS Biology, 17(11), 1–34. https://doi.org/10.1371/journal.pbio.3000534
[27] Yourstone, S.M., Lundberg, D.S., Dangl, J.L. y Jones, C.D. (2014). MT-Toolbox: improved amplicon sequencing using molecule tags. BMC Bioinformatics, 15. doi: https://doi.org/10.1186/1471-2105-15-284
[28] Joshi, N. y Sickle, F. (2011). No Title. A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files (Version 1.33). https://github.com/najoshi/sickle
[29] Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. y Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583. doi: https://doi.org/10.1038/nmeth.3869
[30] Prodan, A., Tremroli, V., Brolin, H., Zwinderman, A., Nieuwdrop. M. y Levin, E. (2020). Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS ONE 15(1): e0227434. doi: https://doi.org/10.1371/journal.pone.0227434
[31] Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. y Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–7541. doi: https://doi.org/10.1128/AEM.01541-09
[32] Gu, Z. (2020). ComplexHeatmap Complete Reference. ComplexHeatmap Complete Reference. https://jokergoo.github.io/ComplexHeatmap-reference/book/
[33] Kolde, R. (2019). pheatmap: Pretty Heatmaps. Pheatmap: Pretty Heatmaps. https://cran.r-project.org/web/packages/pheatmap/index.html
[34] Adhikari, A., Nandi, S., Bhattacharya, I., Roy, M. De, Mandal, T. y Dutta, S. (2015). Phylogenetic analysis based evolutionary study of 16S rRNA in known Pseudomonas sp. Bioinformation, 11(10), 474–480. doi: https://doi.org/10.6026/97320630011474
[35] Perazzolli, M., Antonielli, L., Storari, M., Puopolo, G., Pancher, M., Giovannini, O., Pindo, M. y Pertot, I. (2014). Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Applied and Environmental Microbiology, 80(12), 3585–3596. doi: https://doi.org/10.1128/AEM.00415-14
[36] Gdanetz, K. y Trail, F. (2017). The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes Journal, 1(3), 158–168. doi: https://doi.org/10.1094/PBIOMES-05-17-0023-R
[37] Wagner, M. R., Busby, P. E. y Balint-Kurti, P. (2020). Analysis of leaf microbiome composition of near-isogenic maize lines differing in broad-spectrum disease resistance. New Phytologist, 225(5), 2152–2165. doi: https://doi.org/10.1111/nph.16284
[38] Griffiths, S. M., Galambao, M., Rowntree, J., Goodhead, I., Hall, J., O’Brien, D., Atkinson, N. y Antwis, R. E. (2020). Complex associations between cross-kingdom microbial endophytes and host genotype in ash dieback disease dynamics. Journal of Ecology, 108(1), 291–309. doi: https://doi.org/10.1111/1365-2745.13302
[39] Luo, L., Zhang, Z., Wang, P., Han, Y., Jin, D., Su, P., Tan, X., Zhang, D., Muhammad-Rizwan, H., Lu, X. y Liu, Y. (2019). Variations in phyllosphere microbial community along with the development of angular leaf-spot of cucumber. AMB Express, 9(1). doi: https://doi.org/10.1186/s13568-019-0800-y
[40] Zhang, Z., Kong, X., Jin, D., Yu, H., Zhu, X., Su, X., Wang, P., Zhang, R., Jia, M. y Deng, Y. (2019). Euonymus japonicus phyllosphere microbiome is significantly changed by powdery mildew. Archives of Microbiology, 201(8), 1099–1109. https://doi.org/10.1007/s00203-019-01683-3
[41] Zhang, Z., Luo, L., Tan, X., Kong, X., Yang, J., Wang, D., Zhang, D., Jin, D., y Liu, Y. (2018). Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere. PeerJ, 2018(4), 1–16. doi: https://doi.org/10.7717/peerj.4559
[42] Hesse, C., Schulz, F., Bull, C. T., Shaffer, B. T., Yan, Q., Shapiro, N., Hassan, K. A., Varghese, N., Elbourne, L. D. H., Paulsen, I. T., Kyrpides, N., Woyke, T. y Loper, J. E. (2018). Genome-based evolutionary history of Pseudomonas spp. Environmental Microbiology, 20(6), 2142–2159. doi: https://doi.org/10.1111/1462-2920.14130
[43] Katagiri, F., Thilmony, R. y He, S. Y. (2002). The Arabidopsis thaliana-pseudomonas syringae interaction. The Arabidopsis Book, 1, e0039. doi: https://doi.org/10.1199/tab.0039
[44] Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N., & Samiyappan, R. (2014). Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl, 59, 345-355. doi: https://doi.org/10.1007/s10526-014-9569-8
[45] Bubici, G., Kaushal, M., Prigigallo, M. I., Gómez-Lama Cabanás, C. y Mercado-Blanco, J. (2019). Biological Control Agents Against Fusarium Wilt of Banana. Frontiers in Microbiology, 10, 616. doi: https://doi.org/10.3389/fmicb.2019.00616
[46] Akila, R., Rajendran, L., Harish, S., Saveetha, K., Raguchander, T. y Samiyappan, R. (2011). Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biological Control, 57(3), 175–183. doi: https://doi.org/10.1016/j.biocontrol.2011.02.010