Skip to main navigation menu Skip to main content Skip to site footer

SECTION A: EXACT SCIENCES

Vol. 15 No. 2 (2023)

Design of a Gamma Ray Burst Detection System for the LAGO Collaboration

DOI
https://doi.org/10.18272/aci.v15i2.3130
Submitted
October 26, 2023
Published
2023-12-12

Abstract

The LAGO (Latin American Giant Observatory) Collaboration aims to detect high-energy photons from GRBs (Gamma Ray Bursts) using water Cherenkov detectors (WCDs). To achieve the necessary sensitivity for data collection, WCDs must be installed at sites above 4000 meters above sea level. This paper describes the design of an autonomous WCD detector for installation on the slopes of the Chimborazo volcano (4310 meters above sea level) from the mechanics of the tank, its data acquisition and data storage system, electric power generation and backup systems to guarantee continuous operation over time. It is estimated
that the WCD will be able to operate for a maximum period of 18 months without maintenance, the water purification treatment considerably increases transparency by increasing the number of photoelectrons by a factor of 2 compared to other implementations.

viewed = 328 times

References

  1. Allard, D., Allekotte, I., Álvarez, C., Asorey, H., Barros, H., Bertou, X., Burgoa, O., Gómez Berisso, M., Martínez, O., Miranda Loza, P., Murrieta, T., Pérez, G., Rivera, H., Rovero, A., Saavedra, O., Salazar, H., Tello, J., Ticona Peralda, R., Velarde, A. y Villaseñor, L. (2008). Use of water-Cherenkov detectors to detect Gamma Ray Bursts at the Large Aperture GRB Observatory (LAGO). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 595(1), 57–91. doi: https://doi.org/10.1016/j.nima.2008.07.041
  2. Favaro, M. y Bersten, M. (2019). Análisis de Supernovas Asociadas a estallidos de Radiación Gamma. Repositorio Institucional CONICET, 81–83. https://ri.conicet.gov.ar/handle/11336/187817
  3. Ajello, M., Arimoto, M., Axelsson, M., Baldini, L., Barbiellini, G., Bastieri, D., Bellazzini, R., Bhat, P. N., Bissaldi, E., Blandford, R. D., Bonino, R., Bonnell, J., Bottacini, E., Bregeon, J., Bruel, P., Buehler, R., Cameron, R. A., Caputo, R., Caraveo, P. A., … Zimmer, S. (2019). A Decade of Gamma-Ray Bursts Observed by Fermi-LAT: The Second GRB Catalog. The Astrophysical Journal, 878(1), 52. doi: https://doi.org/10.3847/1538-4357/ab1d4e
  4. Aglietta, M. et al. (1996). Search for gamma-ray bursts at photon energies E >= 10-GeV and E >= 80-TeV. Astrophys. J., 469, 305–310. doi: https://doi.org/10.1086/177779
  5. Bartoli, B., Bernardini, P., Bi, X. J., Cao, Z., Catalanotti, S., Chen, S. Z., Chen, T. L., Cui, S. W., Dai, B. Z., Dâ C™Amone, A., Danzengluobu, Mitri, I. D., Piazzoli, B. D., Girolamo, T. D., Sciascio, G. D., Feng, C. F., Feng, Z., Feng, Z., … Zhu, Q. Q. (2017). Search for Gamma-Ray Bursts with the ARGO-YBJ Detector in Shower Mode. The Astrophysical Journal, 842(1), 31. doi: https://doi.org/10.3847/1538-4357/aa74bc
  6. Collaboration, T. P. A. (2015). The Pierre Auger Cosmic Ray Observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 798, 172–213. doi: https://doi.org/10.1016/j.nima.2015.06
  7. Sidelnik, I. y Asorey, H. (2017). LAGO: The Latin American giant observatory. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 876, 173–175. doi: https://doi.org/10.1016/j.nima.2017.02.069
  8. Sidelnik, I., Otiniano, L., Sarmiento-Cano, C., Sacahui, J., Asorey, H., Rubio-Montero, A. y Mayo-Garcia, R. (2023). The capability of water Cherenkov detectors arrays of the LAGO project to detect Gamma-Ray Burst and high energy astrophysics sources. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1056, 168576. doi: https://doi.org/10.1016/j.nima.2023.168576
  9. Sarmiento, C. A., Nuñez-Castiñeyra, L. A., Asorey, H., Núñez, L. A., Miranda, P. C., Salinas, C. A. y Ticona, R. (2016). Analysis of Background Cosmic Ray Rate in the 2010-2012 Period from the LAGO-Chacaltaya Detectors. https://pure.umsa.bo/es/publications/analysis-of-background-cosmic-ray-rate-in-the-2010-2012-period-fr
  10. Velarde, A., Ticona, R., Miranda, P., Rivera, H. y Quispe Quispe, J. (2009). LARGE APERTURE GAMMA RAY OBSERVATORY THE LAGO PROJECT IN BOLIVIA. Revista Boliviana De Física, 15, 32–38.
  11. Quishpe, R., Audelo, M., Calderón, M., Carrera, E., Cazar, D., Guerrero, D., Mantilla, C., Martínez, O., Vargas, S., Vasquez, N., Velasquez, C. (2015). Panchito Water Cherenkov Detector Water Studies for the LAGO Collaboration. Nuclear and Particle Physics Proceedings, 267-269, 433–435. doi: https://doi.org/10.1016/j.nuclphysbps.2015.10.144
  12. Dupont. (2004). Dupont Tyvek User’s Manual. https://www.dupont.com/content/dam/dupont/amer/us/en/safety/public/documents/en/DuPont_Tyvek_Users_Guide.pdf
  13. The Engineering Toolbox. (2001). Materials Light Reflecting Factors. https://www.engineeringtoolbox.com/light-material-reflecting-factor-d_1842.html
  14. Asorey, H. (2012). Los Detectores Cherenkov del Observatorio Pierre Auger y su Aplicación al Estudio de Fondos de Radiación [Tesis P.h. D]. https://www.researchgate.net/publication/269700456_Los_Detectores_Cherenkov_del_Observatorio_Pierre_Auger_y_su_Aplicacion_al_Estudio_de_Fondos_de_Radiacion
  15. Tene, T. (2013). PROTOCOLO DE PURIFICACIÓN DE AGUA DEL TANQUE CHERENKOV DETECTOR DE PARTÍCULAS CÓSMICAS, 2–5. Escuela Superior Politécnica de Chimborazo. http://dspace.espoch.edu.ec/handle/123456789/2629
  16. Arnaldi, L. H., Cazar, D., Audelo, M. y Sidelnik, I. (2020). The new data acquisition system of the LAGO Collaboration based on the Redpitaya board. IEEE Xplore, 87–92. doi: https://doi.org/10.1109/CAE48787.2020.9046374
  17. Fabara, J. (2023). Simulation and Economic Savings Study of Solar Renewable Systems for a House [Tesis P.h. D].
  18. Proviento. (2016). High-Temp Long Life GEL Deep Cycle Battery HTB12-100. https://proviento.com.ec/bateriassolares/199-bateria-solar-de-gel-vida-util-prolongada-100ah12vdc.html
  19. Poole, C. M., Cornelius, I., Trapp, J. V. y Langton, C. M. (2012). A cad interface for geant4. Australasian physical & engineering sciences in medicine, 35, 329–334.
  20. Sarmiento-Cano, C., Suárez-Durán, M., Ardila, R. C., Vásquez Ramírez, A., Jaimes-Motta, A., Nuñez, L. A., Dasso, S., Sidelnik, I. y Asorey, H. (2022). The ARTI framework: cosmic rays atmospheric background simulations. European Physical Journal C, 82. doi: https://doi.org/10.1140/epjc/s10052-022-10883-z
  21. MAGIC-Collaboration. (2019). Teraelectronvolt emission from the γ-ray burst GRB 190114C. Nature, 575(7783), 455–458. doi: https://doi.org/10.1038/s41586-019-1750-x
  22. Abdalla, H., Adam, R., Aharonian, F., Ait Benkhali, F., Angüner, E. O., Arakawa, M., Arcaro, C., Armand, C., Ashkar, H., Backes, M. et al. (2019). A very-high-energy component deep in the γ-ray burst afterglow. Nature, 575(7783), 464–467.
  23. Huang, Y., Hu, S., Chen, S., Zha, M., Liu, C., Yao, Z., Cao, Z. et al. (2022). LHAASO observed GRB 221009A with more than 5000 VHE photons up to around 18 TeV. GRB Coordinates Network, 32677, 1.
  24. Hamamatsu. (2019). Large Photocatode area Photomultiplier Tube. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/LARGE_AREA_PMT_TPMH1376E.pdf
  25. Cazar-Ramirez, D. (2023). Leopard Designs. https://github.com/DennisCazar/LeopardDesigns
  26. DELL Technologies. (2023). Hard Drive Failures Caused by High Altitudes. https://www.dell.com/support/kbdoc/en-us/000146135/hard-drive-failures-caused-by-high-altitudes

Most read articles by the same author(s)