Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 15 No. 2 (2023)

Groundwater quality index in central west region of Santa Fe province, Argentina: Groundwater quality index

DOI
https://doi.org/10.18272/aci.v15i2.2931
Submitted
March 31, 2023
Published
2023-10-18

Abstract

Water supply is essential to meet the basic needs of the population and promote socio-economic development. However, aquifers are subject to problems of depletion and contamination. To assess the state of water, a quality index is used that considers multiple physical, chemical, and biological parameters, formulated into a mathematical equation within a specified period. Additionally, this index allows for a global analysis of water quality at different levels and determines the vulnerability of the water body to potential threats. The goal of this study is to examine the quality of groundwater in the central-west region of Santa Fe Province, Argentina, using a representative water quality index (WQI). This will allow for the calculation of WQI and the classification of groundwater in terms of its suitability for human consumption, according to the categories of excellent, good, poor, very poor, and unsuitable. Samples were taken at various points in the study area between 2021 and 2022, and the physicochemical characteristics of the samples were determined. For the calculation of WQI, seven physicochemical parameters were used, and each parameter was assigned a weight according to its relative importance in water quality and in terms of adverse effects on human health. The results obtained showed that most of the samples analyzed were classified as "very poor" and "unsuitable for human consumption”. The WQI showed that the chemical quality of groundwater in the central-west region of Santa Fe Province, Argentina, is generally acceptable for supply purposes. Therefore, it is advisable to design a monitoring scheme that reflects any changes in the quality and quantity of the resource, which will allow for the use of corrective and/or palliative measures in the event of its deterioration

viewed = 286 times

References

  1. Paris, M., Tujchneider, O., Pérez, M. y D´Elia, M. (2014). Protección de pozos de abastecimiento. Indicadores de la calidad del agua subterránea. Tecnología y Ciencias del Agua, 5(4), 5-22. doi: http://revistatyca.org.mx/ojs/index.php/tyca/article/view/448
  2. Smith, R., Knight, R. y Fendorf, S. (2018). Overpumping leads to California groundwater arsenic threat. Nat Commun, 9, 2089. doi: https://doi.org/10.1038/s41467-018-04475-3
  3. Gao, Y., Qian, H., Ren, W., Wang, H., Liu, F. y Yang, F. (2020). Hydrogeochemical characterization and quality assessment of groundwater based on integrated-weight water quality index in a concentrated urban area. Journal of cleaner production, 260, 121006. doi: https://doi.org/10.1016/j.jclepro.2020.121006
  4. Silva, M.I., Gonçalves, A.M.L., Lopes, W.A., Lima, M.T.V., Costa, C.T.F., Paris, M., Firmino, P.R.A. y De Paula Filho, F.J. (2021). Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, w=vbnm,terquality index and multivariate statistical techniques. Journal of Hydrology, 598, 126346. doi: https://doi.org/10.1016/j.jhydrol.2021.126346
  5. Schwartz, F.W., Zhang, Y. y Ibaraki, M. (2019). What’s next now that the boom in contaminant hydrogeology has busted? Groundwater, 57(2), 205-215. doi: https://doi.org/10.1111/gwat.12851
  6. Parrone, D., Ghergo, S., Frollini, E., Rossi, D. y Preziosi, E. (2020). Arsenic-fluoride co-contamination in groundwater: Background and anomalies in a volcanic-sedimentary aquifer in central Italy. Journal of Geochemical Exploration, 217, 106590. doi:https://doi.org/10.1016/j.gexplo.2020.106590
  7. Asadi, E., Isazadeh, M., Samadianfard, S., Firuz Ramli, M., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E. y Chau, K. (2020). Groundwater Quality Assessment for Sustainable Drinking and Irrigation. Sustainability,12(1), 177. doi: https://doi.org/10.3390/su12010177
  8. Soni, H.B. y S. Thomas (2014). Assessment of surface water quality in relation to water quality index of tropical lentic environment, Central Gujarat, India. International Journal of Environment, 3(1), 168-176. doi: https://doi.org/10.3126/ije.v3i1.9952
  9. Bretcan, P., Tanislav, D., Radulescu, C., Serban, G., Danielescu, S., Reid, M. y Dunea, D. (2022). Evaluation of Shallow Groundwater Quality at Regional Scales Using Adaptive Water Quality Indices. International Journal of Environmental Research and Public Health, 19(17), 10637. doi: https://doi.org/10.3390/ijerph191710637
  10. Horton, R. (1965). An Index Number System for Rating Water Quality. Journal of Water Pollution Control Federation, 37, 300-306
  11. Brown R.M., McClelland N.I., Deininger R.A. y Tozer R.G. (1970). A Water Quality Index — Do We Dare? Water Sewage Works, 117, 339–343
  12. Liou, S. M., Lo, S. L. y Hu, C. Y. (2003). Application of two-stage fuzzy set theory to river quality evaluation in Taiwan. Water Research, 37(6), 1406-1416. doi:https://doi.org/10.1016/S0043-1354(02)00479-7
  13. Debels, P., Figueroa, R., Urrutia R. y Barra R. (2005). Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index. Environmental Monitoring and Assessment, 110(1-3), 301-322. doi:https://doi.org/10.1007/s10661-005-8064-1
  14. Guillén, V., Teck, H., Kohlmann, B. y Yeomans, J. (2012). Microorganismos como bioindicadores de la Calidad del Agua. Tierra tropical: sostenibilidad, ambiente y sociedad, 8(1), 65-93
  15. Zhang, Q., Qian, H., Xu, P., Hou, K. y Yang, F. (2021). Groundwater quality assessment using a new integrated-weight water quality index (IWQI) and driver analysis in the Jiaokou Irrigation District, China. Ecotoxicology and Environmental Safety, 212, 111992. doi:https://doi.org/10.1016/j.ecoenv.2021.111992
  16. Sadat-Noori, S.M., Ebrahimi, K. y Liaghat, A. (2014). Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Irán. Environmental Earth Sciences, 71(9), 3827-3843. doi: https://doi.org/10.1007/s12665-013-2770-8
  17. El Baba, M., Kayastha, P., Huysmans, M. y De Smedt, F. (2020). Evaluation of the groundwater quality using the water quality index and geostatistical analysis in the Dier al-Balah Governorate, Gaza Strip, Palestine. Water, 12(1), 262. doi: https://doi.org/10.3390/w12010262
  18. Bundschuh, J., Nicolli, H., Blanco, M., Blarasin, M., Farías, S., Cumbal, L., Cornejo, L., Acarapi, J., Lienqueo, H., Arenas, M., Guerequiz, R., Bhattacharya, P., García, M., Quintanilla, J., Deschamps, E., Viola, Z, Castro de Esparza, M., Rodríguez, J., Pérez Carrera, A. y Cirelli, A. (2011). Distribución de arsénico en la región sudamericana. En J. Bundschuh, A. Pérez Carrera y M. Litter (Eds.), Distribución del arsénico en las regiones Ibérica e Iberoamérica CYTED IBEROARSEN (pp.148–149). CYTED.
  19. Nicolli, H., Bundschuh, J., Blanco, M., Tujchneider, O., Panarello, H., Dapeña, C. y Rusansky, J. (2012). Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. The Science of the total environment, 429, 36–56. doi: https://doi.org/10.1016/j.scitotenv.2012.04.048
  20. Litter, M. I., Ingallinella, A. M., Olmos, V., Savio, M., Difeo, G., Botto, L. y …Ahmad, A. (2019). Arsenic in Argentina: Occurrence, human health, legislation and determination. Science of the Total Environment, 676, 756-766. doi: https://doi.org/10.1016/j.scitotenv.2019.04.262
  21. Bolaños-Alfaro, J. D., Cordero-Castro, G. y Segura-Araya, G. (2017). Determinación de nitritos, nitratos, sulfatos y fosfatos en agua potable como indicadores de contaminación ocasionada por el hombre, en dos cantones de Alajuela (Costa Rica). Revista Tecnología en Marcha, 30(4), 15-27. doi: https://dialnet.unirioja.es/servlet/articulo?codigo=7436266
  22. Torres-Martínez, J. A., Mora, A., Knappett, P. S., Ornelas-Soto, N. y Mahlknecht, J. (2020). Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Research, 182, 115962. doi: https://doi.org/10.1016/j.watres.2020.115962
  23. Adimalla, N. (2020). Spatial distribution, exposure, and potential health risk assessment from nitrate in drinking water from semi-arid region of South India. Human and ecological risk assessment: an international journal, 26(2), 310-334. doi: https://doi.org/10.1080/10807039.2018.1508329
  24. Petrabissi, H. y Sapino V. (2022). Anuario meteorológico 2022. Estación Agrometeorológica Experimental Agropecuaria Rafaela. Instituto Nacional de Tecnología Agropecuaria.
  25. Instituto Nacional de Estadísticas y Censos República Argentina. (1 enero, 2023). Censo Nacional de Población, Hogares y Viviendas 2022. Censo 2022. https://censo.gob.ar/
  26. American Public Health Association. (2017). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation.
  27. Código Alimentario Argentino, Artículo 982 (Resolución Conjunta SPRyRS y SAGPyA N° 68/2007 y N° 196/2019). (2019). https://www.argentina.gob.ar/anmat/codigoalimentario
  28. Boglione, R., Panigatti, M.C., Griffa, C., Schierano, M.C., Asforno, M. y Sapino, V. (2018). Predicción de la contaminación de aguas subterráneas aplicando ARC-GIS. Libro Digital Distribución, Determinación y Remoción de Arsénico en Aguas (pp.6-16). Edutecne. https://ria.utn.edu.ar/xmlui/handle/20.500.12272/4174
  29. Nazir, H. M., Hussain, I., Zafar, M. I., Ali, Z., y AbdEl-Salam, N. M.. (2016). Classification of Drinking Water Quality Index and Identification of Significant Factors. Water Resources Management, 30, 4233–4246. doi: https://doi.org/10.1007/s11269-016-1417-4
  30. Prasad, M., Sunitha, V., Reddy, Y. S., Suvarna, B., Reddy, B. M. y Reddy, M. R. (2019). Data on water quality index development for groundwater quality assessment from Obulavaripalli Mandal, YSR district, AP India. Data in brief, 24, 103846. doi: https://doi.org/10.1016/j.dib.2019.103846
  31. Verma, P., Singh, P.K., Sinha, R.R. y Tiwari, A.K. (2020). Assessment of groundwater quality status by using water quality index (WQI) and geographic information system (GIS) approaches: a case study of the Bokaro district, India. Applied Water Science, 10, 27. doi: https://doi.org/10.1007/s13201-019-1088-4
  32. Iriondo M. (2012). Aguas Superficiales y Subterráneas de la Provincia de Santa Fe. Museo Provincial de Ciencias Naturales Florentino Ameghino
  33. Todd, D. K. y Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons
  34. Organización Mundial de la Salud. (2007). Guías para la calidad del agua potable. Biblioteca OMS, 1(3), 1-398
  35. Kohn, J., Soto, D. X., Iwanyshyn, M., Olson, B., Kalischuk, A., Lorenz, K. y Hendry, M. J. (2016). Groundwater nitrate and chloride trends in an agriculture-intensive area in southern Alberta, Canada. Water Quality Research Journal of Canadá, 51(1), 47-59. doi: https://doi.org/10.2166/wqrjc.2015.132
  36. Rodvang, S. J., Mikalson, D. M. y Ryan, M. C. (2004). Changes in ground water quality in an irrigated area of southern Alberta. Journal of Environmental Quality, 33, 476–487. doi: https://doi.org/10.2134/jeq2004.4760
  37. Haller, L., McCarthy, P., O'Brien, T., Riehle, J. y Stuhldreher, T. (2013). Nitrate pollution of groundwater. Alpha Water Systems INC
  38. Viers, J. H., Liptzin, D., Rosenstock, T. S., Jensen, V. B. y Hollander, A. D. (2012). Nitrogen Sources and Loading to groundwater. California State Water Resources Control Board
  39. Ren, C., Zhang, Q., Wang, H. y Wang, Y. (2021). Identification of Sources and Transformations of Nitrate in the Intense Human Activity Region of North China Using a Multi-Isotope and Bayesian Model. International Journal of Environmental Research Public Health, 18, 8642. doi: https://doi.org/10.3390/ijerph18168642
  40. Lorenz, K., Iwanyshyn, M., Olson, B., Kalischuk, A. y Pentland, J. (2014). Livestock manure impacts on groundwater quality in Alberta: 2008 to 2011 Progress Report. Alberta Agriculture and Rural Development.
  41. Menció, A., Mas-Pla, J., Otero, N., Regàs, O., Boy-Roura, M., Puig, R. y Folch, A. (2016). Nitrate pollution of groundwater; all right…, but nothing else? Science of the total environment, 539, 241-251. doi: https://doi.org/10.1016/j.scitotenv.2015.08.151
  42. Ceplecha, Z. L., Waskom, R. M., Bauder, T. A., Sharkoff, J.L. y Khosla, R. (2004). Vulnerability assessment of Colorado ground water to nitrate contamination. Water, Air, Soil and Pollution, 159, 373–394. doi: https://doi.org/10.1023/B:WATE.0000049188.73506.c9
  43. Muñoz, H., Armienta, A., Vera, A. y Ceniceros, N. (2004). Nitrato en el agua subterránea del valle de Huamantla, Tlaxcala, México. Revista Internacional de Contaminación Ambiental, 20(3), 91-97. https://www.redalyc.org/articulo.oa?id=37020301
  44. Smedley, P.L., Kinniburgh, D.G., Macdonald, D.M.J., Nicolli, H.B., Barros, A.J., Tullio, J.O., Pearce, J.M. y Alonso, M.S. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20(5), 989-1016.
  45. http://hdl.handle.net/20.500.12110/paper_08832927_v20_n5_p989_Smedley
  46. Tello, E.E. (1951). Hidroarsenicismo Crónico Regional Endémico (HACRE): sus manifestaciones clínicas. Universidad Nacional de Córdoba.
  47. Tello, E.E. (1986). Arsenicismos hídricos: ¿qué es el hidroarsenicismo crónico regional endémico argentino (HACREA)? Archivos Argentinos de Dermatología, 26(4), 197-214.