Skip to main navigation menu Skip to main content Skip to site footer

SECTION A: EXACT SCIENCES

Vol. 7 No. 1 (2015)

Massive complex Klein-Gordon scalar field in a Schwarzschild background

DOI
https://doi.org/10.18272/aci.v7i1.216
Submitted
November 24, 2015
Published
2015-05-22

Abstract

The behaviour of a massive complex Klein-Gordon scalar field in a Schwarzschild background is analized using tortoise coordinates. Using these coordinates we obtain an expression for the action in terms of an effective potential and a radial wave function. From the action we get the corresponding wave equation and obtain some solutions of that equation for a mode of frequency u. Additionally, we study the effective potential in terms of the radial distance r and the quantum number l. Finally, we estimate the energy that we need to traverse the potential barrier for some values of l.

viewed = 695 times

References

  1. Ludvigsen, M. 1999. "General Relativity A Geometric Approach", Cambridge University Press, Cambridge, UK.
  2. Kenyon, I. 1996. "General Relativity", Oxford University Press, Oxford, UK.
  3. Marín, C. 2007. "La Expansión del Universo", Una Introducción a Cosmología, Relatividad General y Física de Partículas, USFQ, Quito - Ecuador.
  4. Ohanian, H. 1976. "Gravitation and Spacetime", W. W. Norton & Company, Inc.
  5. Misner, C.; Thorne, K.; Wheeler, J. 1973. "Gravitation", W. H. Freeman & Company, NY.
  6. Cheng, T. 2005. "Relativity, Gravitation and Cosmology, A Basic Introduction", Oxford University Press, Oxford, UK.
  7. Ryder, L. 1991. "Quantum Field Theory", Cambridge University Press, Cambridge, UK.
  8. Kaku, M. 1993. "Quantum Field Theory, A Modern Introduction", Oxford University Press, Oxford, UK.
  9. Halzen, F.; Martin, A. 1984. "Quarks and Leptons", John Wiley & Sons.
  10. Susskind, L.; Lindesay, J. 2005. "An Introduction to Black Holes, Information and the String Theory Revolution, The Holographic Universe", World Scientific Publishing.
  11. Arfken, G.; Weber, H. 2005. "Mathematical Methods for Physicists", Sixth Edition, Academic Press.
  12. Riley, K.; Hobson, M.; Bence, S. 2006. "Mathematical Methods for Physics and Engineering", Third Edition, Cambridge University Press, Cambridge, UK.
  13. Hobson, M.; Efstathiou, G.; Lasenby, A. 2006. "General Relativity, An Introduction for Physicists", Cambridge University Press, Cambridge, UK.
  14. Spiegel, M.; Rapun, L. 1988. "Fórmulas y Tablas de Matemática Aplicada", Mc Graw Hill.
  15. Beyer, W. 1991. "Standard Mathematical Tables and Formulae", 29th Edition, CRC Press.