Skip to main navigation menu Skip to main content Skip to site footer

Bionucleares 2020

Vol. 12 No. 3 (2020): Aplicaciones Nucleares (2021)

Phenotypic evaluation of two generations of pea plants (Pisum sativum L.) from gamma-radiated seeds to identify resistance to Ascochyta spp.

DOI
https://doi.org/10.18272/aci.v12i3.1918
Submitted
August 6, 2020
Published
2021-05-05

Abstract

SUMMARY

Pea culture (Pisum sativum L.) is severely affected by Ascoquitosis, a disease that causes large losses in yield. There are no genotypes that have genetic resistance; to generate them and identify resistant plants, gamma-ray mutations were induced in seeds of the variety INIAP 436 Liliana, which aimed to evaluate phenotypically two generations of pea plants from irradiated seeds. The research was three stages: first, it was determined that the optimal dose of radiation to induce mutations was 120 Gy. In the second stage 30000 seeds were irradiated at that dose, planted in the field next to a witness population constituting the M1 generation. In the treated population were observed: decrease in the percentage of emergency, occurrence of chimeric and sterile plants. The harvested seeds originated the M2 generation (third stage), which was planted in the field in two localities next to a witness population, There were no significant differences between the emergency percentages of the populations in the two localities; Chlorophyll mutant plants of the categories albin, xantha and viridis were observed. The frequency of induced chlorophilic mutations was 0.22%. The values of mutagenic effectiveness and efficiency were 0.0018 and 0.0169, respectively. Plants in flowering stage were inoculated with ascochyta sp isolations. and his reaction was assessed. Two plants with intermediate resistance were selected. His progeny was sown under a greenhouse and at 35 days he was inoculated with Ascochyta spp; the reaction was susceptibility. In this study, the use of gamma rays was not effective in obtaining resistance to Ascoquitosis, possibly because it is a polygenic character, or the radiation dose was low with a chance of a simultaneous change of those genes is quite low.

Keywords: mutations, gamma rays, chlorophilic mutants, progeny, genetic enhancement.

viewed = 482 times

References

  1. Skoglund, L., Harvenson, R., Chen, W., Dugan, F., Schwartz, H., Markell, S. (2011). Vulgamore Family Farms. , from http://www.vffarms.com/Images/Resources/Crop_Health/Peas/Ascochyta_Peas.pdf.
  2. Bretag, T., Keane, P., & Price, T. (2006). The epidemiology and control of ascochyta blight in filed peas: a review. Australian Journal of Agricultural Research(57), 883-902.
  3. Lawyer, A. (1984). Foliar Diseases Caused by Fungi: Diseases caused by Ascochyta spp. In D. Hagedorn, Compendium of Pea Diseases (pp. 11-15). St Paul, Minnesota: American Phytophatological Society Press.
  4. INIAP (Instituto Nacional Autónomo de Investigaciones Agropecuarias). (2010). Informe Técnico Anual. Estación Experimental Santa Catalina. Quito, Ecuador.
  5. Prina, A., Landau, A., Pacheco, M., & Hopp, E. (2010). Mutagénesis, TILLING y EcoTILLING. En G. Levitus, V. Echenique, C. Rubinstein, E. Hopp, & L. Mronginski (Edits.), Biotecnología y Mejoramiento Vegetal (Segunda edición ed., págs. 217-228). Castelar, Argentina: Argenbio INTA.
  6. Mba, C., & Shu, Q. (2012). Gamma Irradiation. En Q. Shu, B. Foster, & H. Nakagawa (Edits.), Plant Mutation Breeding and Biotechnology. (págs. 91-98). Vienna, Austria: S.L. CABI (Centre for Agriculture Bioscience International) Joint FAO IAEA.
  7. Lagoda, P. (2012). Effects of Radiation on Living Cells and Plants. En Q. Shu, B. Foster, & H. Nakagawa (Edits.), Plant Mutation Breeding and Biotechnology (págs. 123-133). Vienna: S.L. CABI (Centre for Agriculture Bioscience International). Joint FAO IAEA.
  8. Curtis, M. (2012). DNA Repair Pathways and Genes in Plant. En Q. Shu, B. Foster, & H. Nakagawa (Edits.), Plant Mutation Breeding and Biotechnology (págs. 57-59). Vienna, Austria: S.L. CABI (Centre for Agriculture Bioscience International). Joint FAO IAEA.
  9. FNCA (Forum for Nuclear Cooperation in Asia). (2004). Mutation Breeding Manual. (F. Medina, E. Amano, & T. S, Edits.) FNCA.
  10. Maluszynski, M., Szarejko, I., Chittaranjan, B., Nichterlein, K., & Lagoda, P. (2009). Methodologies for generating variability Part 4: Mutation techniques. En S. Ceccarelli, E. Guimarães, & E. Weltizien (Edits.), Plant Breeding and Farmer Participation (págs. 160-173). Roma, Italia: FAO.
  11. Dhulgande, G., Dhale, D., Pachkore, G., & Satpute, R. (2011). Mutagenic Effectiveness and Efficiency of Gamma Rays and Ethyl Methanesulphonate in Pea (Pisum sativum L.). Journal of Experimental Sciences, 3(2), 7-8.
  12. Peralta, E., Murillo, A., Mazón, N., Monar, C., Pinzón, J., & Rivera, M. (2010). Manual Agrícola de Fréjol y otras Leguminosas. Cultivos, variedades y costos de producción. (Segunda edición ed.). Quito, Ecuador: Programa Nacional de Leguminosas y Granos Andinos. Estación Experimental Santa Catalina. INIAP
  13. Zhang, J., Fernando, D., & Xue, A. (2003). Virulence and genetic variability among isolates of Mycosphaerella pinodes. Plant Disease(87), 1376-1383.
  14. McDonald, J. (2009). Handbook of Biological Statistics. Recuperado el 20 de enero de 2013, de http://udel.edu/~mcdonald/stattransform.html.
  15. Castellanos, G., Jara, C., & Mosquera, G. (2011). Guías Prácticas de Laboratorio para el Manejo de Patógenos del Frijol. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT).
  16. Wani, A. (2009). Mutagenic Effectiveness and Efficiency of Gamma Rays, Ethyl Methane Sulphonate and their combination treatments in Chickpea (Cicer arietinum L.). Asian Journal of Plant Science, 1-4.
  17. Onfroy, C., Tivoli, B., Corbiere, R., & Bouznad, Z. (1999). Cultural, molecular and pathogenic variability of Mycosphaerella pinodes and Phoma medicaginis var. pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathology, 48, 218-229.
  18. Çiftçi, Y., Divalin Tϋrkan, A., & Khawar, K. (2006). Use of Gamma Rays to Induce Mutations in four Pea (Pisum sativum L) Cultivars. Turk J Biol, 29-37.
  19. Kon, E., Ahmed, O., Saamin, S., & Majid, N. (2007). Gamma Radiosensitivity Study on Long Bean (Vigna sesquipedalis). Am. J. Applied Sci, 12(4), 1090-1093.
  20. Borzouei, A., Kafi, M., Khazaei, H., Naseriyan, B., & y Majdabadi, A. (2010). Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot, 42(4), 2281-2290.
  21. Mejri, S. M., Voisin, M., Delavault, P., Simier, P., Saidi, M., & y Belhadj, O. (2012). Variation in quantitative characters of faba bean after seed irradiation and associated molecular changes. Afr. J. Biotechnol,, 11(33).
  22. Evans, H. (1965). Effects of radiations on meristematig cells. Radiation Botany, 5(2), 171-182.
  23. Gómez, L., Torres, M., & Romero, M. (1984). Inducción de mutaciones en arveja (Pisum sativum L.) para la Sierra del Perú. (FAO/IAEA, Ed.) Induced mutations for crop improvement in America, 356
  24. Taiz, L., & Zeiger, E. (2006). Fisiología Vegetal. Castello de la Plana, España: Publicacions de la Universitat Jaume I.
  25. Balkema, G. (1971). Chimerism and diplontic selection. PhD Tesis Landlouwhogeschool. Wageningen, Holanda
  26. Prina, A., Landau, A., & Pacheco, M. (2012). Chimeras and Mutant Gene Transmission. En Q. Shu, P. Foster, & H. Nakagawa (Edits.), Plant Mutation Breeding and Biotechnology (págs. 184-188). S.L. CABI (Centre for Agriculture Bioscience International) Joint FAO/IAEA.
  27. Demchenko, S. & Avrutskaya, T. (1979) On the nature of the induced sterility of plants. Arabidopsis information service, (16) 84-88.
  28. Ekberg, I. (1969). Different types of sterility induced in barley by ionizing radiations and chemical mutagens. Hereditas. 63, 255-278
  29. Timmerman-Vaughan, G.,Frew, T.,Russell, A., Khan, T. Butler, R., Gilpin, M., Murray, S & Falloon, K. (2002). QTL Mapping of Partial Resistance to Field Epidemics of Ascochyta Blight of Pea. Crop Sci. 42:2100-2111.
  30. Prina, A. (1989). Consideraciones sobre la aplicación eficiente de la mutagénesis inducida en fitomejoramiento. Mendeliana, 9(1), 5-49.
  31. Pabón, L. (2011). Inducción de mutaciones mediante radiaciones gamma de (Passiflora edulis Sim var. edulis). Tesis de Grado. Universidad Nacional de Colombia.
  32. Instituto Nacional de Meteorología e Hidrología (INAMHI). (2017). Anuario Meteorológico No. 53-2013. Quito, Ecuador.

Similar Articles

You may also start an advanced similarity search for this article.