Variabilidad Espacial de Dimensiones Fractales en Curvas de Retención de Agua

Contenido principal del artículo

Samuele De Bartolo
Carmine Fallico
María Fernanda Rivera-Velasquez
Massimo Veltri

Resumen

El estudio de la variabilidad espacial de específicas magnitudes que caracterizan el suelo no saturado es muy importante para la evaluación de los fenómenos de contaminación. La Geoestadística es una herramienta útil para la estimación de la variabilidad espacial de los parámetros considerados. El objetivo de este estudio es mejorara la comprensión de la variabilidad espacial de la dimensión fractal en las curvas de retención de agua, mostrando de esta manera el comportamiento de este parámetro en los puntos muestreados y de manera particular en los puntos donde no existen muestras. La evaluación de la dimensión fractal se calculó por el análisis de escalamiento obtenido a partir de algunos modelos fractales y la posterior comparación entre los resultados correspondientes.

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
De Bartolo, S., Fallico, C., Rivera-Velasquez, M. F., & Veltri, M. (2015). Variabilidad Espacial de Dimensiones Fractales en Curvas de Retención de Agua. ACI Avances En Ciencias E Ingenierías, 7(2). https://doi.org/10.18272/aci.v7i2.262
Sección
SECCIÓN C: INGENIERÍAS
Biografía del autor/a

Samuele De Bartolo, Universitá della Calabria

Universita della Calabria, Dipartimento di Ingegneria Civile, Ponte P. Bucci Cubo 41B, 87036, Rende, Italia.

Carmine Fallico, Universitá della Calabria

Universita della Calabria, Dipartimento di Ingegneria Civile, Ponte P. Bucci Cubo 41B, 87036, Rende, Italia.

María Fernanda Rivera-Velasquez, Universidad Nacional de Chimborazo

Universidad Nacional de Chimborazo, Facultad de Ingeniería, Avenida Antonio José de Sucre, EC060104 Riobamba, Ecuador

Massimo Veltri, Universitá della Calabria

Universita della Calabria, Dipartimento di Ingegneria Civile, Ponte P. Bucci Cubo 41B, 87036, Rende, Italia.

Citas

[1] Anderson, A. N.; McBratney, A. B. 1995. “Soil aggregates as mass fractals”. Australian Journal of Soil Research, 33 (5): 757-772.

[2] Tyler, S. W.; Wheatcraft, S. W. 1989. “Application of fractal mathematics to soil water retention estimation”. Soil Society of American Journal, 53 (4): 987-996.

[3] Perfect, E.; Kay, B. D. 1991. “Fractal theory applied to soil aggregation”. Soil Science Society of American Journal, 55 (6): 1552-1558.

[4] Crawford, J. W.; Sleeman, B. D.; Young, I. M. 1993. “On the relation between number-size distribution and the fractal dimension of aggregates”. Journal of Soil Science, 44 (4): 555-565.

[5] Toledo, G.; Novy, R. A.; Davis, H. T.; Scriven, L. E. 1990. “Hydraulic conductivity of porous media at low water content”. Soil Science Society of American Journal, 54 (3): 673-679.

[6] Katz, A. J.; Thompson, A. H. 1985. “Fractal sandstone pores: implications for conductivity and pore formation”. Physical Review Letters, 54 (12): 1325-1327.

[7] Bird, N.; Bartoli, F.; Dexter, A. R. 1996. “Water retention models for fractal soil structure”. European Journal ofSoil Science, 47 (1): 1-6.

[8] Rieu, M.; Sposito, G. 1991a. “Fractal fragmentation, soil porosity and soil water properties: I. Theory”. Soil Science Society of American Journal, 55 (5): 1231-1238.

[9] Rieu, M.; Sposito, G. 1991b. “Fractal fragmentation, soil porosity and soil water properties: II. Applications”. Soil Science Society of America Journal, 55 (5): 1239-1244.

[10] Crawford, J. W.; Ritz, K.; Young, I. M. 1995. “The relation between the moisture-release curve and the structure of soil”. European Journal ofSoil Science, 46 (3): 369-375.

[11] Perrier, E.; Rieu, M.; Sposito, G.; Marsily, G. 1996. “Models of the water retention curve for soils with a fractal pore size distribution”. Water Resources Research, 32 (10): 3025-3031.

[12] Bird, N.; Perrier, E.; Rieu, M. 2000. “The water retention function for a model of soil structure with pore and solid fractal distributions”. European Journal of Soil Science, 51 (1): 55-63.

[13] Matheron, G. 1971. “The theory of regionalized variables and its applications”. Les Cahiers du Centre de Morphologie Mathématique, Fascicule 5. Centre de Géostatistique, Fontainableau, France, 212.

[14] Journel, A. G.; Huijbregts, C. J. 1978. “Mining Geostatistics”. London, ENGLAND: Academic Press.

[15] Deutsch, C. V; Jounel, A. G. 1998. “GSLIB Geostatistical Software Library and User’s Guide”. New York, USA: Oxford University Press.

[16] Isaaks, E. H.; Srivastava, M. 1989. “An Introduction to Applied Geostatistics”. New York, USA: Oxford University Press.

[17] Hunt, A. G. 2004. “Continuum percolation theory for pressure-saturation characteristics of fractal soils: extension to non-equilibrium”. Advances in Water Resources, 27 (3): 245-257.

[18] Perfect, E. 2005. “Modeling the primary drainage curve of prefractal porous media”. Vadose Zone Journal, 4 (4): 959-966.

[19] Perfect, E.; Kenst, A. B.; Diaz-Zorita, M.; Grove, J. H. 2004. “Fractal analysis of soil water desorption data collected on disturbed samples with water activity meters”. Soil Science Society of America Journal, 68 (4): 1177-1184.

[20] Tyler, S. W.; Wheatcraft, S. W. 1990. “Fractal processes in soil water retention”. Water Resources Research, 26 (5): 1047-1054.

[21] Danielson, R. E.; Sutherland, P. L. 1986. “Porosity. In: Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods”. American Society of Agronomy: 443-461.

[22] Perrier, E.; Bird, N.; Rieu, M. 1999. “Generalizing the fractal model of soil structure: the PSF approach”. Geoderma, 88 (3-4): 137-164.

[23] Wang, K.; Zhang, R.; Wang, F. 2005. “Testing the poresolid fractal model for the soil water retention function”. Soil Science Society of America Journal, 69 (3): 776-782.

[24] Millán, H.; Gonzáles-Posada, M. 2005. “Modelling soil water retention scaling. Comparison of a classical fractal model with a piecewise approach”. Geoderma, 125 (1-2): 25-38.

[25] Fallico, C.; Tarquis, A. M.; De Bartolo, S.; Veltri, M. 2010. “Scaling analysis of water retention curves for unsaturated sandy loam soils by using fractal geometry”. European Journal ofSoil Science, 61 (3): 425-436.

[26] Meakin, P. 1998. “Fractals, Scaling and Growth Far From Equilibrium”. Cambridge, ENGLAND: Cambridge University Press.

[27] Matheron, G. 1963. “Principles of geostatistics”. Economic Geology, 58 (8): 1246-1266.

[28] Tobler, W. 1970. “A computer movie simulating urban growth in the Detroit region”. Economic Geography, 46 (2): 234-240.

[29] Barnett, V; Lewis, T. 1978. “Outliers in Statistical Data”. New York, USA: John Wiley and Sons.

[30] Dixon, W. J. 1953. “Processing Data for Outliers”. Biometrics, 9 (1): 74-89.

[31] Davis, C. J. 1973. “Statistics and Data Analysis in Geology”. New York, USA: John Wiley & Sons.

[32] Kolmogorov, A. N. 1933. “Foundations ofthe Theory of Probability”. New York, USA: Chelsea Publishing Company.

[33] Anderson, T. W.; Darling, D. A. 1952. “Asymptotic theory of certain goodness of fit criteria based on stochastic processes”. Annals of Mathematical Statistics, 23 (2): 193-212.

[34] Kitanidis, P.; Vomvoris, E. 1983. “A geostatistical approach to the inverse problem in ground water modeling (steady state) and one dimensional simulations”. Water Resource Research, 19 (3): 677-690.

[35] Armstrong, M. 1998. “Basic Linear Geostatistics”. Berlin, GERMANY: Springer Verlag.