Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 16 No. 2 (2024)

Maize drought tolerance improvement in a public breeding program

Submitted
May 1, 2024
Published
2024-09-04

Abstract

World maize production is mainly carried out in rainfed systems in which the main limitation to grain yield is usually water availability. In maize, the anthesis-silking interval (ASI, in days) is proved to be a useful secondary trait as it is highly correlated with improved grain yield in drought-prone environments, has high heritability and can be fast and accurately measured in the field. The objective of this work was to characterize and select a set of inbred lines for their tolerance to water stress. To achieve this, 240 inbred lines of the INTA Pergamino Temperate Maize Breeding Program were field grown during the 2019-20 season at high planting density (16 pl.m-2) in a randomized complete block design with 2 replicates. A subset of 50 inbreds was sown in the same site during the dry 2020-21 growing season. Inbreds were characterized for ASI and defensive traits, such as root and stalk lodging. High stand density promoted the expression of significant genotypic differences in ASI (p < 0.05, mean: 2.3 d, range: -3 to +9 d), root (p < 0.05, mean: 26.5%, range: 0 to 100%) and stalk lodging (p < 0.05, mean: 5.3%, range: 0 to 80%). Heritabilities values were 63, 51 and 64 for ASI, root and stalk lodging, respectively. In 2020-21, the 50 inbreds with the lowest ASI values (mean = 0.52), and with less than 20% and 5% root and stalk lodging, respectively were evaluated again, finding significant differences between inbreds (for ASI: p<0.05, mean: 1.8, range: -3 to +6 days). Based on the data obtained in both years, a set of inbreds representative of the different heterotic groups of the breeding program was selected to make biparental crosses and develop new inbreds with shorter ASI, and therefore, with better performance under stressful conditions. For this, the inbreeding from the S0 generation and the evaluation of inbreds in hybrid combination will be carried out at high planting density (16 pl.m-2). This selection method will allow the development of stress-tolerant germplasm.

viewed = 103 times

References

  1. Cirilo, A. G., & Andrade, F. H. (1994). Sowing date and maize productivity: II. Kernel number determination. Crop
  2. Science, 34(4), 1044-1046.
  3. Otegui, M. E. (1995). Prolificacy and grain yield components in modern Argentinean maize hybrids. Maydica, 40(4),
  4. -376.
  5. Fischer K.S., Palmer, A.F.E. (1984) Tropical Maize. In: P.R. Goldsworthy y N.M. Fisher (Eds.). The physiology of tropical
  6. field crops. J. Wiley & Sons Ltd., Avon. p. 213-248.
  7. Borrás, L., & Vitantonio-Mazzini, L. N. (2018). Maize reproductive development and kernel set under limited plant
  8. growth environments. Journal of Experimental Botany, 69(13), 3235-3243. https://doi.org/10.1093/jxb/erx452
  9. Andrade, F. H., Vega, C., Uhart, S., Cirilo, A. G., Cantarero, M., & Valentinuz, O. (1999). Kernel number determination in
  10. maize. Crop Science, 39(2), 453-459.
  11. Pagano, E., & Maddonni, G. A. (2007). Intra-specific competition in maize: Early established hierarchies differ in plant
  12. growth and biomass partitioning to the ear around silking. Field Crops Research, 101(3), 306-320.
  13. Borrás, L., Westgate, M. E., Astini, J. P., & Echarte, L. (2007). Coupling time to silking with plant growth rate in maize.
  14. Field Crops Research, 102(1), 73-85.
  15. Bolaños, J., & Edmeades, G. O. (1993). Eight cycles of selection for drought tolerance in lowland tropical maize. II.
  16. Responses in reproductive behavior. Field Crops Research, 31(3), 253-268.
  17. Cárcova, J., Uribelarrea, M., Borrás, L., Otegui, M. E., & Westgate, M. E. (2000). Synchronous pollination within and
  18. between ears improves kernel set in maize. Crop Science, 40(4), 1056-1061.
  19. FAOSTAT. (2024). Food and Agriculture Organization of the United Nations – Statistics Division. Disponible en: http://
  20. fao.org/faostat/es/ (Fecha de acceso: 10 de abril de 2024).
  21. Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual
  22. Review of Environment and Resources, 34, 179-204.
  23. Hall, A. J., Lemcoff, J. H., & Trapani, N. (1981). Water stress before and during flowering in maize and its effects on yield,
  24. its components, and their determinants. Maydica, 26(1), 19-38.
  25. Grant, R. F., Jackson, B. S., Kiniry, J. R., & Arkin, G. F. (1989). Water deficit effects on yield components in maize.
  26. Agronomy Journal, 81(1), 61-65.
  27. Herrero, M. P., & Johnson, R. R. (1981). Drought stress and its effects on maize reproductive systems. Crop Science,
  28. (1), 105-110.
  29. Otegui, M. E., Andrade, F. H., & Suero, E. E. (1995). Growth, water use, and kernel abortion of maize subjected to
  30. drought at silking. Field Crops Research, 40(2), 87-94.
  31. Ludlow, M. M., & Muchow, R. C. (1990). A critical evaluation of traits for improving crop yields in water-limited
  32. environments. Advances in Agronomy, 43, 107-153.
  33. Bolaños, J., & Edmeades, G. O. (1996). The importance of the anthesis silking interval in breeding for drought tolerance
  34. in tropical maize. Field Crops Research, 48(1), 65-80.
  35. Bänziger, M., & Lafitte, H. R. (1997). Breeding tropical maize for low N environments. II. The values of secondary traits
  36. for improving selection gains under low N. Crop Science, 37(4), 1110-1117.
  37. Blum, A. (1988). Plant Breeding for Stress Environments. CRC Press Inc., Boca Raton.
  38. Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics (4th ed.). Pearson Education Limited,
  39. Prentice Hall, Essex, England.
  40. Rebolloza-Hernández, H., Cervantes-Adame, Y. F., Broa-Rojas, E., Bahena-Delgado, G., & Olvera-Velona, A. (2020).
  41. Fenotipeo y selección de líneas S1 segregantes de maíz tolerantes a estrés hídrico. Biotecnia, XXII(3), 20-28.
  42. Tollenaar, M., & Lee, E. A. (2002). Yield potential yield, yield stability and stress tolerance in maize. Field Crops Research,
  43. (2-3), 161-170.
  44. Mansfield, B. D., & Mumm, R. H. (2014). Survey of plant density tolerance in U.S. maize germplasm. Crop Science,
  45. (1), 157-173. https://doi.org/10.2135/cropsci2013.04.0252
  46. Lee, E., & Tollenaar, M. (2007). Physiological basis of successful breeding strategies for maize grain yield. Crop Science,
  47. (S1), S202-S215.
  48. Shull, G. H. (1908). The composition of a field of maize. American Breeders Association Report, 4, 296-301.
  49. Shull, G. H. (1909). A pureline method of corn breeding. American Breeders Association Report, 5, 51-59.
  50. Andorf, C., Beavis, W. D., Hufford, M., Smith, S., Suza, W. P., Wang, K., Woodhouse, M., Yu, J., & Lübberstedt, T. (2019).
  51. Technological advances in maize breeding: past, present and future. Theoretical Applied Genetics, 132(3), 817-849.
  52. https://doi.org/10.1007/s00122-019-03306-3
  53. Campos, H., Cooper, M., Edmeades, G. O., Löffler, C., Schussler, J. R., & Ibañez, M. (2006). Changes in drought tolerance
  54. in maize associated with fifty years of breeding for yield in the U.S. Corn Belt. Maydica, 51(3), 369-381.
  55. Welcker, C., Spencer, N. A., Turc, O., Granato, I., Chapuis, R., Madur, D., Beauchene, K., Gouesnard, B., Drayer, X.,
  56. Palaffre, C., Lorgeou, J., Melkior, S., Guillaume, C., Presterl, T., Murigneux, A. L., Wisser, R. J., Millet, E. J., van Eeuwijk,
  57. F., Charcosset, A., & Tardieu, F. (2022). Physiological adaptive traits are a potential allele reservoir for maize genetic
  58. progress under challenging conditions. Nature Communications, 13(1), 3225. https://doi.org/10.1038/s41467-022-
  59. -w
  60. Dos Santos, C. L., Miguez, F. E., King, K. A., Ruiz, A., Sciarresi, C., Baum, M. E., Danalatos, G. J. N., Stallman, M., Wiley, E.,
  61. Pico, L. O., Thies, A., Puntel, L. A., Topp, C. N., Trifunovic, S., Eudy, D., Mensah, C., Edwards, J. W., Schnable, P. S., Lamkey,
  62. K. R., Vyn, T. J., & Archontoulis, S. V. (2023). Accelerated leaf appearance and flowering in maize after four decades of
  63. commercial breeding. Crop Science, 63(3), 2750-2762. https://doi.org/10.1002/csc2.21044
  64. Echarte, L., & Tollenaar, M. (2006). Kernel set in maize hybrids and their inbred lines exposed to stress. Crop Science,
  65. (3), 870-878.
  66. Liu, W., & Tollenaar, M. (2009). Response of yield heterosis to increasing plant density in maize. Crop Science, 49(6),
  67. -1816.
  68. Araus, J. L., Sánchez, C., & Cabrera-Bosquet, L. (2010). Is heterosis in maize mediated through better water use? New
  69. Phytologist, 187(2), 392-406.
  70. Cooper, M., Messina, C., Podlich, D., Radu Totir, L., Baumgarten, A., Hausmann, N. J., Wright, D., & Graham, G. (2014).
  71. Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction. Crop and
  72. Pasture Science, 65(4), 311-336. https://doi.org/10.1071/CP14007