Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 2 No. 2 (2010)

Strain hardening of crystalline materials

DOI
https://doi.org/10.18272/aci.v2i2.31
Submitted
July 2, 2015
Published
2010-06-01

Abstract

To describe the work hardening process of crystalline materials in uniaxial deformation, a gradient-one-internal-variable model (GM1) constructed in the basis of the Kocks-Mecking model is proposed. The time and temperature dependence of flow stress is accounted via grain boundary migration, and the migration is related to annihilation of extrinsic grain boundary dislocations (EGBD"™s) by climb via lattice diffusion of vacancies at the triple points. To model the polycrystalline behavior of commercially pure nickel (from a composite point of view) by means of the finite element method, virtual specimens with dimen­sions in the range 3-25 μm should be used.

viewed = 996 times

References

  1. Ashby, M. F. 1970. "The Deformation of Plastically Non-homogeneous Materials". Phil. Mag. 21, 399-421
  2. Narutani, T. and Takamura, J. 1991. "Grain-size Strengthening in Terms of Dislocation Density Measured by Resistivity". Acta Metall. Mater. 39(8), 2037-2049.
  3. Mecking, H. and Kocks, U. 1981. "Kinetics of Flow and Strain-hardening".ActaMetall. 29, 1865-1875.
  4. Meakin, J. D. and Petch, N. J. 1974. "Strain-hardening of Polycrystals: the Alfa-brass". Phil. Mag. 30, 11491156.
  5. Dingley, D. J. and McLean, D. 1967. "Components of the Flow Stress of Iron". ActaMetall. 15. 885-901.
  6. Thompson, A. W. and Flanagan, W. F. 1973. "The Dependence of Polycristal Work Hardening on Grain Size". ActaMetall. 21, 1017-1028.
  7. James, C. and Li, M. 1963. "Petch Relation and Grain Boundary Sources". Trans. of the Metallurgical Society ofAIME. 227,239-247.
  8. Murr,L. 1975. Met. Trans. 6A, 505-515.
  9. Meyers, A. and Ashworth, E. Phil. Mag. A. 46(5), 737759.
  10. Guyot, S. and Richards, N. L. 2005. "Effect of Small Strain Levels on Special Boundary Distribution in Commercially Pure Nickel". Journal of Materials Eng. and Performance. 14, 85-90.
  11. Sangal, S. and Tangri, K. 1989. "The Effect of Small Plastic Deformation and Annealing on the Properties of Polycristals: Part I and Part II". Met. Trans. 20A, 471485.
  12. Bonifaz, E. A. 2000. "Modelo Elastoplástico de Estructuras Bifásicas Policristalinas " PhD thesis University of Navarra-Spain.
  13. Thompson, A. W. 1975. "Yielding in Nickel as a Function of Grain or Cell Size". Acta Metall. 23, 13371342.
  14. Estrin, Y. 1988. "Dislocation Theory based Constitutive Modelling: Foundations and Applications". Journal of Materials Processing Technology. 33-39.