Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 15 No. 2 (2023)

Discrete event problem solution in dynamic systems using Petri networks and HiPS software

DOI
https://doi.org/10.18272/aci.v15i2.2932
Submitted
March 31, 2023
Published
2023-10-18

Abstract

In this work are exposed the solution steps of the cat and mouse problem published in the article from 1984, using Petri networks models and the Hiearchical Petri Net Simulator Software (HiPS). The objective is to show familiarity and the methodology of applying controllable language in discrete events using the previous tools, since the article was written almost 39 years ago without the advantages of information technologies where discrete events can be simulated. Besides showing the control schematics of Petri networks that allows the problem solution under fulfillment of certain conditions, the simulation software is used in advantage to get the model’s coverage and reachability table, an incidence matrix, the identification of out-of-conflict states and transitions to execute those states without restrictions. In symbolic terms, the behavior of the cat and the mouse can represent equipment, sensors, actuators, robots, machinery, or dynamic production systems. The results were optimal, and conclusions are discussed.

viewed = 229 times

References

  1. Kuntsevich, V. M., Gubarev, V. F., Kondratenko, Y. P., Lebedev, D. V. y Lysenko, V. P. (2018). Control Systems: Theory and Applications. River Publishers.
  2. Balemi, S. (1992). Control of Discrete Event Systems: Theory and application. ADAG Administration & Druck AG.
  3. Gunardi, Y. y Hanafi, D. (2022, julio 20-21). Petri net modeling for mobile robot in sharp turning cases. International Seminar of Intelligent Technology and its Applications (ISITIA). Surabaya, Indonesia. doi: https://doi.org/10.1109/ISITIA56226.2022.9855287
  4. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi: https://doi.org/10.1109/5.24143
  5. Wang, J. (2007). Petri Nets for Dynamic Event-Driven System Modeling. En P. A. Fishwick (Ed.), Handbook of Dynamic System Modeling. Monmouth University. doi: https://doi.org/10.1201/9781420010855
  6. Zurawski, R. y Zhou, M. (1994). Petri nets and industrial applications: A tutorial. IEEE Transactions on Industrial Electronics, 41(6), 567-583. doi: https://doi.org/10.1109/41.334574
  7. Restrepo, P. L. A. (2011). Un método computacional para la detección y caracterización de conflictos en redes de Petri. Revista Ingenierías Universidad de Medellín, 10(19), 189-199. https://repository.udem.edu.co/handle/11407/931
  8. Ramadge, P. J. (1983). Control and Supervision of Discrete Event Processes. Department of Electrical Engineering, University of Toronto.
  9. Ramadge, P. J. y Wonham, W. M. (1982, diciembre 8-10). Supervision of discrete event processes. 21st IEEE Conference on Decision and Control. Orlando, FL, EE.UU. doi: https://doi.org/10.1109/CDC.1982.268351
  10. Ramadge, P. J. y Wonham, W. M. (1987). Supervisory control of a class of discrete event processes. SIAM Journal on Control and Optimization, 25(1), 206-230. doi: https://doi.org/10.1137/0325013
  11. Wonham, W. M. y Ramadge, P. J. (1987). On the Supremal Controllable Sublanguage of a given Language. SIAM Journal on Control and Optimization, 25(3), 637-659. doi: https://doi.org/10.1137/0325036
  12. Wonham, W. M. y Ramadge, P. J. (1984, diciembre 12-14). On the supremal controllable sublanguage of a given language. 23rd Conference on Decision and Control. Las Vegas, NV, EE.UU. doi: https://doi.org/10.1109/CDC.1984.272178
  13. Čapkovič, F. (1993). A Petri Nets-Based Approach to the Maze Problem Solving. En S. Balemi, P. Kozák y S. Smendiga (Eds.), Discrete Event Systems: Modeling and Control (pp. 173-179). Birkhäuser Basel. doi: https://doi.org/10.1007/978-3-0348-9120-2_15
  14. Uzam, M. (2004). Synthesis of feedback control elements for discrete event systems using Petri net models and theory of regions. International Journal of Advance Technology, 24, 48-69. doi: https://doi.org/10.1007/s00170-003-1715-x
  15. Harie, Y., Mitsui, Y., Fujimori, K., Batajoo, A. y Wasaki, K. (2017, octubre 24-27). HiPS: Hierarchical Petri Net design, simulation, verification and model checking tool. IEEE 6th Global Conference on Consumer Electronics (GCCE). Nagoya, Japón. doi: https://doi.org/10.1109/GCCE.2017.8229199
  16. KWasaki1967. (2017, junio 4). HiPS: Hierarchical Petri net Simulator [video]. YouTube. https://www.youtube.com/watch?v=usF1JrQegOE