Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 17 No. 1 (2025)

Equatorial synoptic climatology. Case analysis of specific surface situations affecting continental Ecuador

DOI
https://doi.org/10.18272/aci.v17i1.2829
Submitted
October 17, 2022
Published
2025-01-29

Abstract

In mid-latitude countries, several catalogues have been developed to classify the synoptic situations typical of the region. However, research on the classification of synoptic situations in Tropical South America and Ecuador remains scarce. This study aims to analyze case studies regarding on the influence of the main climatological features of Tropical South America on Ecuador, including the Intertropical Convergence Zone, the Southeast Pacific High, the North Atlantic High, and the South Atlantic High, as well as the meteorological phenomena El Niño and El Veranillo del Niño. The objective is to develop a classification of specific surface synoptic situations affecting Ecuador. 

For the case studies, ERA-Interim atmospheric reanalyses from the European Centre for Medium-Range Weather Forecasts were processed and interpreted, considering horizontal wind components and surface air pressure for the years 1998, 2000, 2018, and 2019. Seven surface weather situations were examined based on the eight main wind rose directions, considering seasonal migration, average changes in the location and extent of climatological features, and the influence of major meteorological phenomena. Atmospheric pressure and surface wind vector maps of Tropical South America and continental Ecuador were generated, depicting some of the main synoptic surface advections affecting Ecuador’s coastal and eastern regions. As a result, a classification of surface synoptic situations for these regions is presented, based on the primary semi-permanent synoptic climatological features and the most representative meteorological phenomena of Tropical South America.     

viewed = 149 times

References

  1. Alessandro, A. P. (1998). Contribuciones al estudio de la climatología sinóptica en la Argentina (Doctoral dissertation, Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales) https://bibliotecadigital.exactas.uba.ar/greenstone3/exa/collection/tesis/document/tesis_n3091_Alessandro
  2. Martín Vide, J., & Olcina, J. (2001). Climas y tiempos de España. Madrid: Alianza Editorial.
  3. Hewitson, B., & Crane, R. (2002). Self-organizing maps: Applications to synoptic climatology. Climate Research, 22(1), 13–26. https://www.int-res.com/abstracts/cr/v22/n1/p13-26/
  4. Tullot, I. F. (2000). Climatología de España y Portugal. Universidad de Salamanca.
  5. Albentosa, L. (1976). Climatología dinámica, sinóptica o sintética. Origen y desarrollo. Revista de Geografía, 10(1-2), 10-15. https://www.raco.cat/index.php/RevistaGeografia/article/download/45713/56702
  6. Martín Vide, J. (2005). Los mapas del tiempo. Davinci Continental.
  7. Instituto Nacional de Meteorología e Hidrología. (2014). Lo que debemos saber sobre meteorología. INAMHI. https://es.scribd.com/document/422431595/Lo-Que-Debemos-Saber-Sobre-Metorologia-INAMHI-2014
  8. Satyamurty, P., & Rosa, M. (2019). Synoptic climatology of tropical and subtropical South America and adjoining seas as inferred from Geostationary Operational Environmental Satellite imagery. International Journal of Climatology, 40(1), 378–399. https://doi.org/10.1002/joc.6217
  9. Waliser, D. E., & Gautier, C. (1993). A satellite-derived climatology of the ITCZ. Journal of climate, 6(11), 2162-2174. https://www.jstor.org/stable/26198602
  10. Wang, C. C., & Magnusdottir, G. (2006). The ITCZ in the central and eastern Pacific on synoptic time scales. Monthly Weather Review, 134(5), 1405-1421. https://doi.org/10.1175/MWR3130.1
  11. Rahn, D. A., & Garreaud, R. D. (2014). A synoptic climatology of the near-surface wind along the west coast of South America. International Journal of Climatology, 34(3). https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.3724
  12. Halpern, D. (2002). An atlas of monthly mean distributions of SSMI wind speed, AVHRR sea surface temperature, TMI sea surface temperature, QuikSCAT ocean vector wind, SeaWiFS Chlorophyll-a, and TOPEX/POSEIDON sea surface topography during 2001 (Vol. 2). National Aeronautics and Space Administration, Jet Propulsion Laboratory. https://ntrs.nasa.gov/api/citations/19950004463/downloads/19950004463.pdf
  13. Rodwell, M. J., & Hoskins, B. J. (2001). Subtropical anticyclones and summer monsoons. Journal of Climate, 14(15), 3192-3211. https://journals.ametsoc.org/view/journals/clim/14/15/1520-0442_2001_014_3192_saasm_2.0.co_2.xml
  14. American Meteorological Society. (10 October 2022). Equatorial easterlies. Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Equatorial_easterlies
  15. Emck, P. (2007). A climatology of south Ecuador-with special focus on the major Andean ridge as Atlantic-Pacific climate divide (Doctoral dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg).
  16. Andreoli, R. V., de Oliveira, S. S., Kayano, M. T., Viegas, J., de Souza, R. A. F., & Candido, L. A. (2017). The influence of different El Niño types on the South American rainfall. International Journal of Climatology, 37(3).
  17. Larkin, N. K., & Harrison, D. E. (2002). ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. Journal of climate, 15(10). https://doi.org/10.1175/1520-0442(2002)015<1118:EWENOA>2.0.CO;2
  18. Corporación Andina de Fomento. (2000). El Fenómeno El Niño 1997-1998. Memoria, retos y soluciones (Vol. 4). Equipo de Dirección y Coordinación Técnica CAF.
  19. Instituto Geográfico Militar. (2010). Cartas topográficas del Ecuador (ríos, vías y poblados): Escala 1:50 000. IGM.
  20. Matos, L., & Souza, P. (2002). Climatología sinóptica en América del Sur: Aspectos metodológicos. Revista Brasileira de Climatologia, 1(1), 25-34.
  21. Philander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. Academic Press.
  22. Trenberth, K. E., & Stepaniak, D. P. (2001). Indices of El Niño evolution. Journal of Climate, 14(8), 1697–1701.
  23. Garreaud, R., Vuille, M., Compagnucci, R., & Marengo, J. (2009). Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 180-195.
  24. Mata, L. J., & Budhooram, J. (2007). Complementarity between mitigation and adaptation: The water sector. Mitigation and Adaptation Strategies for Global Change, 12(5), 799–807.
  25. Aceituno, P. (1988). On the functioning of the Southern Oscillation in the South American sector. Monthly Weather Review, 116(3), 505–524.
  26. Garreaud, R. D. (2009). The Andes climate and weather. Advances in Geosciences, 22, 3–11.
  27. Vuille, M., Bradley, R. S., & Keimig, F. (2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research: Atmospheres, 105(D10), 12447–12460.
  28. Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI). (2021). Clima y variabilidad climática en el Perú.
  29. Instituto Geográfico Militar. (2013). Atlas geográfico de la república del Ecuador. IGM.
  30. Instituto Nacional de Meteorología e Hidrología. (2008). Promedios anuales de precipitación para el Ecuador. Escala 1: 1.000.000. INAMHI.
  31. Instituto Nacional de Meteorología e Hidrología. (2015). Anuario Meteorológico N° 52-2012. INAMHI. https://es.slideshare.net/slideshow/am-2012/77446693
  32. Nuñez Cobo, J., & Verbist, K. (2018). Atlas de sequías de América Latina y el Caribe. UNESCO Publishing.
  33. Secretaría de Gestión de Riesgos del Ecuador. (2018). Plan nacional de respuesta ante desastres. https://www.gestionderiesgos.gob.ec/wp-content/uploads/downloads/2018/08/Plan-Nacional-de-Respuesta-SGR-RespondeEC.pdf
  34. Woodruff, S., Worley, S., Lubker, S., Ji, Z. Freeman, J., Berry, D., Brohan, P., Kent, E., Reynolds, R., Smith, S., & Wilkinson, C. (2011). ICOADS Release 2.5; extensions and enhancements to the surface marine meteorological archive. International Journal of Climatology, 31. https://digitalcommons.unl.edu/usdeptcommercepub/332/
  35. Saha, S., Moorthi S., Pan, H., Wu, X., Wang, J., S, Nadiga., Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes, D., Grumbine, R., Gayno, G., Wang, J., Hou, Y., Chuang, H., H. Juang, H., Sela, J… Goldberg, M. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015-1058. https://journals.ametsoc.org/view/journals/bams/91/8/2010bams3001_1.xml
  36. Whelpdale, D. M., Low, T. B., & Kolomeychuk, R. J. (1984). Advection climatology for the east coast of North America. Atmospheric Environment (1967), 18(7). https://doi.org/10.1016/0004-6981(84)90040-4
  37. Alfaro, E. J. (2014). Caracterización del “veranillo” en dos cuencas de la vertiente del Pacífico de Costa Rica, América Central. Revista de Biología Tropical, 62(4), 1-15. https://www.redalyc.org/pdf/449/44958812002.pdf
  38. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., ... & Joseph, D. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3). https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  39. Torres, E. S., Estela, L. B. L., Suárez, L. M. S., & Naranjo, Y. V. (2020). Catálogo de los tipos de situaciones sinópticas que influyen sobre Cuba. Centro Meteorológico de la Isla de la Juventud, INSMET.
  40. Torres, E. S., Suárez, L. M. S., Naranjo, Y. V., & Estela, L. B. L. (2022). Caracterización sinóptico-climatológica de la rapidez media del viento en la costa norte de la mitad oriental de Cuba. Revista cubana de meteorología, 28(4). https://www.redalyc.org/journal/7019/701977562003/701977562003.pdf
  41. Paredes Orihuela, D. E. (2023). Olas de calor en la región norte del Perú y su correlación con eventos ENSO (1979-2018). Universidad Nacional Agraria La Molina, Facultad de Ciencias, Departamento Académico de Ingeniería Ambiental, Física y Meteorología. https://hdl.handle.net/20.500.12996/5601
  42. Ogassawara, J. F., Nunes, A. B., & Riquetti, N. B. (2021). Eventos extremos de precipitação na Bacia Hidrográfica do Rio Piratini: relação com Enos e estudo de caso. Revista Brasileira de Climatologia, 28, 342-364. https://ojs.ufgd.edu.br/index.php/rbclima/article/view/14570