Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 7 No. 2 (2015)

Beyond main effects assumption in Conjoint Analysis: Comparison of Conjoint Value Analysis vs. Choice-based Conjoint. Statistical approach and construction of designs applied to New Product Development

DOI
https://doi.org/10.18272/aci.v7i2.264
Submitted
January 22, 2016
Published
2015-12-30

Abstract

The assumption of only main effects in Conjoint Analysis methods has created a debate whether to focus or not on the impact of interactions in determining the most prefered combination of attributes of a product. In this research a comparison of Conjoint Value Analysis CVA and Choice-Based Conjoint CBC surveys were undertaken to contrast them through utility scores, importance values of attributes and goodness-of-fit using ready to drink beverages as the subject. The main effects assumption in the CVA composition rule was compared to the interaction terms in the CBC one. Two scenarios were developed; the first one considered inner characteristics of the subject and a sample size of 250 respondents. The second one considered the presentation characteristics of the subject and a sample size of 150 respondents. The two higher total utility scores were obtained in the CBC using an interactive composition rule. In Scenario 1 a higher goodness-of-fit was found in the CBC, including significant interactions, in contrast with Scenario 2, where no interactions were found, and CVA had a higher goodness-of-fit.

viewed = 1263 times

References

  1. Karniouchina, E.; Moore, W.; van der Rhee, B. 2008. "Issues in the use of ratings-based versus Choice-based conjoint analysis" in operations management research. European Journal of Operational Research, 197 (1): 340-348.
  2. Jervis, S.; Ennis, J.; Drake, M. 2012. "Comparison of adaptive choice-based conjoint and choice-based conjoint to determine key choice attributes of sour cream with limited sample size". Raleigh: Journal of Sensory Studies, 27: 451-562.
  3. Lambin, J. J.; Schulling, I. 2008. "Market-Driven Management: Supplementary web resource material". Palgrave Macmillan: 117-125.
  4. Orme, B.; Chrzan, K. 2000. "An overview and Comparison of Design Strategies for Choice-Based Conjoint Analysis". Sawtooth Software Research Paper Series, Washington, USA. https://www.sawtoothsoftware.com/download/techpap/desgncbc.pdf.
  5. Barone, S.; Lombardo, A.; Tarantino, P. 2007. "A Weighted Logistic Regression for Conjoint Analysis and Kansei Engineering". Quality and Reliability Engineering International, 23: 689-706.
  6. Sawtooth Software. 2009. "The CBC/HB System for Hierarchical Bayes Estimation Version 5.0 Technical Paper". Sawtooth Software Technical Paper Series. Washington, USA. https://www.sawtoothsoftware.com/download/techpap/hbtech.pdf.
  7. Green, P. E. 1990. "Conjoint Analysis in Marketing: New Developments with Implication for Research and Practice". Journal of Marketing, 54 (4): 1-19.
  8. Hair Jr, J. F.; Black W. C.; Babin, B. J.; Anderson, R. E. (2007). "Multivariate Data Analysis". Prentice-Hall.
  9. Rao, V R. 2010. "Conjoint analysis". John Wiley & Sons, USA.
  10. Orme, B. 2010. "Getting Started with Conjoint Analysis: Strategies for Product Design and Pricing Research". Research Publishers LLC: Madison, USA.
  11. Sawtooth Software Inc. 2014. "SSI Web Help Manual". Sawtooth Software: Orem, USA. https://sawtoothsoftware.com/support/manuals/ssi-web-help.
  12. Orme, B.; Alpert, M.; Christensen, E. 1997. "Assessing the validity of conjoint analysis - continued". Sawtooth Software Research Paper Series. Washington, USA. https://www.sawtoothsoftware.com/download/techpap/assess2.pdf.
  13. Sawtooth Software, Inc. 2013. "The CBC System for Choice-Based Conjoint Analysis Version 8". Utah, USA. https://sawtoothsoftware.com/download/techpap/cbctech.pdf.
  14. Brown-Forman. 2011. "Ready-To-Drinks". Brown-Forman: Kentucky, USA. http://www.ourthinkingaboutdrinking.com/uploadedfiles/PDF_Downloads/Read-y-to-Drinks.pdf.
  15. [15] Instituto Nacional de Estadística y Censos (INEC). 2011-2012. "Encuesta Nacional de Ingresos y Gastos en hogares Urbanos y Rurales (ENIGHUR)". Ecuador en cifras: Quito, Ecuador. http://www.inec.gob.ec/Enighur_/Analisis_ENIGHUR%202011-2012_rev.pdf.
  16. Sojo, O. C. 2012. "Patrones de consumo de alcohol en el Ecuador". FLACSO, Investigación: San José, Costa Rica.
  17. King, E. 2012. "Regulatory Impact Statement: Alcohol Reform Bill - Policy Amendments for Inclusion in the Government Supplementary Order Paper". Minitry of Justice: New Zeland. http://www.treasury.govt.nz/publications/informationreleases/ris/pdfs/ris-justice-arbp-aug12.pdf.
  18. World Health Organization (WHO). 2014. "Global Alcohol Report - Ecuador". World Health Organization: Geneva, Suiza. http://www.who.int/substance_abuse/publications/global_alcohol_report/profiles/ecu.pdf.
  19. Addelman, S. 1962. "Symmetrical and Asymmetrical Fractional Factorial Plans". American Society for Quality, 4 (1): 47-58.
  20. Xu, H. 2005. "A catalogue of three-level regular fractional factorial designs". Metrika, 62: 259-281.
  21. Preston, C. C.; Colman, A. M. 2000. "Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preference". Acta Phychologica, 104 (1): 1-15.
  22. Igomereho, O. S. 2011. "Conjoint Analysis: A Strategic Tool for Product Research". International Journal of Economic Development Research and Investment, 2 (3): 1-9.
  23. Sawtooth Software Inc. 2002. "Conjoint Value Analysis (CVA) Version 3.0". Sawtooth Software Technical Paper Series. Washington, USA. https://www.sawtoothsoftware.com/download/techpap/cva3tech.pdf.
  24. Howell, J. 2009. "CBC/HB for beginners. Sequim: Sawtooth Software". Sawtooth Software Research Paper Series. Washington, USA. http://www.sawtoothsoftware.com/download/techpap/CBCHBbeginners.pdf.
  25. Allenby, G. M.; Rossi, P. E.; McCulloch, R. E. 2005. "Hierarchical Bayes Models: A Practitioners Guide". Social Science Research Network. Ohio, USA. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=655541.
  26. Lenk, P.; DeSarbo, W.; Green, P.; Young, M. 1996. "Hierarchical Bayes conjoint analysis: recovery of part worth heterogeneity from reduced experimental designs". Marketing Science, 15 (2): 173-191.
  27. Moskowitz, H. R.; Silcher, M. 2006. "The applications of conjoint analysis and their possible uses in Sensometrics". Food Quality and Preference, 17: 145-165.
  28. Chib, S.; Greenberg, E. 1995. "Understanding the Metropolis-Hastings Algorithm". The American Statistician, 49 (4): 327-335.