Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 14 No. 1 (2022)

Analysis of the maize production in Spain

DOI
https://doi.org/10.18272/aci.v14i1.2468
Submitted
October 14, 2021
Published
2022-03-31

Abstract

This study aims to summarize the current situation of maize production in Spain in relation to the world situation. At present, the two main constraints to increasing the area cultivated with maize and increasing its yield in Spain are the availability of water and economic profitability. For this reason, this work summarizes the progress achieved to date, but also the potential improvements that could improve their economic performance without increasing (or even decreasing) their environmental impact. These techniques require inevitably an improvement of the use efficiency of the agronomic inputs (fertilizers, diesel, pesticides"¦), as well as, the improvement of water use. Therefore, farmers who wish to continue growing maize in Spain, in addition to being able to improve their yields and reduce their environmental impact, must, above all, improve their production margins.

viewed = 637 times

References

  1. MAPA (2020). Anuarios de Estadística. Ministerio de Agricultura, Pesca y Alimentación. Madrid, España. Recuperado de: https://www.mapa.gob.es/es/estadistica/temas/publicaciones/anuario-de-estadistica/default.aspx
  2. Peel, M.C., Finlayson, B.L., McMahon, T.A. (2007). Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633-1644. doi: https://doi.org/10.5194/hess-11-1633-2007
  3. Instituto Geográfico Nacional. 2021. Mapas de España. Recuperado de: https://www.ign.es/web/catalogo-cartoteca/
  4. FAOSTAT (2021). Roma, Italia. Recuperado de: https://www.fao.org/faostat/en/
  5. Comisión Europea, 2019. El Pacto Verde Europeo. Bruselas, Bélgica. Recuperado de: https://eur-lex.europa.eu/legal-content/ES/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN
  6. Quemada, M., Gabriel, J.L. (2016). Approaches for increasing nitrogen and water use efficiency simultaneously. Glob. Food Sec. 9, 29-35. doi: https://doi.org/10.1016/j.gfs.2016.05.004
  7. Alonso-Ayuso, M., Gabriel, J.L., Hontoria, C., Ibáñez, M.A., Quemada, M. (2020). The cover crop termination choice to designing sustainable cropping systems. European Journal of Agronomy 114, 126000. doi: https://doi.org/10.1016/j.eja.2020.126000
  8. Gabriel, J.L., Muñoz-Carpena, R., Quemada, M. (2012). The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 155:50-61. doi: https://doi.org/10.1016/j.agee.2012.03.021
  9. Gabriel, J.L., Quemada, M. (2017). Water Management for Enhancing Crop Nutrient Use Efficiency and Reducing Losses. En: Tei, F., Nicola, S., Benincassa, P., Advances in Research on Fertilization Management of Vegetable Crops. Springer Nature, Cham, Suiza. pp. 247-265.
  10. Alonso-Ayuso, M., Quemada, M., Vanclooster, M., Ruiz-Ramos, M., Rodriguez, A., & Gabriel, J.L. (2018). Assessing cover crop management under actual and climate change conditions. Science of the Total Environment 621, 1330-1341. doi: https://doi.org/10.1016/j.scitotenv.2017.10.095
  11. Gabriel, J.L., Quemada, M., Martín-Lammerding, D., & Vanclooster, M., (2019). Assessing the cover crop effect on soil hydraulic properties by inverse modelling in a 10-year field trial. Agricultural Water Management 222, 62-71. doi: https://doi.org/10.1016/j.agwat.2019.05.034
  12. García-González, I., Hontoria, C., Gabriel, J.L., Alonso-Ayuso, M., & Quemada, M., (2018). Cover crops to mitigate soil degradation and enhance soil functionality in irrigated land. Geoderma 322, 81-88. doi: https://doi.org/10.1016/j.geoderma.2018.02.024
  13. Jarvis, S.C., Stockdale, E.A., Shepherd, M.A., & Powlson, D.S., (1996). Nitrogen mineralization in temperate agricultural soils: processes and measurement. Adv. Agron. 57,187-235. doi: https://doi.org/10.1016/S0065-2113(08)60925-6
  14. Quemada, M. (2004). Predicting crop residue decomposition using moisture adjusted time scales. Nutr. Cycl. Agroecosyst. 70, 283-291. doi: https://doi.org/10.1007/s10705-005-0533-y
  15. McIsaac, G.F., David, M.B., Gertner, G.Z., & Goolsby, D.A., (2001) Eutrophication - nitrateflux in the Mississippi river. Nature 414, 166-167. doi: https://doi.org/10.1038/35102672
  16. Schjoerring, J.K., Husted, S., Mack, G., H0ier, K., Finnemann, J., & Mattsson, M., (2000). Physiological regulation of plant-atmosphere ammonia exchange. Plant Soil 221, 95-102. Recuperado de: https://www.jstor.org/stable/42950737
  17. Allende-Montalbán, R., Martín-Lammerding, D., Delgado, M.d.M., Porcel, M.A., & Gabriel, J.L., (2021). Urease Inhibitors Effects on the Nitrogen Use Efficiency in a Maize-Wheat Rotation with or without Water Deficit. Agriculture 11, 684. doi: https://doi.org/10.3390/agriculture11070684
  18. ANFFE. (2021). Macromagnitudes Sectoriales 2020. http://www.anffe.com/informaci%F3n%20sectorial/macromagnitudes%20sectoriales/2020/index.html
  19. Paliwal, R.L., Granados, G., Lafitte, H.R., & Violic, A.D., (2001). El maíz en los trópicos: Mejoramiento y producción. Ed. FAO, Roma, Italia.
  20. AgriSat. 2021. Recuperado de: https://agrisat.es/
  21. FieldView. 2021. Recuperado de: https://climatefieldview.es/
  22. HispatecAgro. 2021. Recuperado de: https://www.hispatec.com/
  23. sigAGROasesor 2021. Recuperado de: https://www.agroasesor.es/es/