Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 7 No. 1 (2015)

Comparative study of the compostability of LDPE, oxo-biodegradable and paper bags distributed in Distrito Metropolitano de Quito

DOI
https://doi.org/10.18272/aci.v7i1.233
Submitted
November 24, 2015
Published
2015-05-22

Abstract

In this study the degradation behavior of different types of commercial T-type bags has been investigated. The bags tested according to their commercial description are: LDPE plastic, oxo-biodegradable plastic and paper. The investigation was performed over a period of 32 weeks under real conditions. The composting essays were inoculated with fresh commercial humus and the humidity was controlled over the complete period, while the temperature was kept at the low mesophilic regime at room temperature, without direct contact to sunlight. The determination of the degradation was based on the analyses of total solids and organic total solids, as well as visual observations.

The results show that only the paper bags were biodegraded appropriately, leaving no residue after 32 weeks. While neither the LDPE nor the oxo-biodegradable plastic bags show any signs of disintegration or degradation over the entire period. These results were expected for the LDPE bags, but not for the oxo-biodegradable plastics. As conclusion the low biodegradability of these bags is explained by the fact that even if the bags are commercially distributed as biodegradables, they are normal LDPE bags with an oxo-additive. Actually, according to the definition, they cannot be considered as biodegradable, since they can only be degraded by few microorganisms in a very slow rate. The degradation of their chemical structure occur by the action of heat or ultraviolet light. And since non of these conditions were found during this investigation, the bags suffer no disintegration.

viewed = 2815 times

References

  1. Ali, A.; Hasan, F.; Hameed, A.; Ahmed, S. 2008. "Biological degradation of plastics: A comprehensive review." Biotechnology Advances, 26: 246-265.
  2. Ishigaki, T.; Sugano, W.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. 2004. "The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors." Chemosphere, 54: 225-233.
  3. Andrady, A.; Neal, M. 2009. "Applications and societal benefits of plastics." Philosophical transactions of the royal society biological science, 364: 1977-1984.
  4. Mohee, R.; Unmar, G. 2007. "Determining biodegradability of plastic materials under controlled and natural composting environments." Waste Management, 27: 1486-1493.
  5. Mohee, R.; Unmar, G. D.; Mudhoo, A.; Khadoo, P. 2008. "Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions." Waste Management, 28: 1624-1629.
  6. Plastic Europe, 2014. "Plastics - The Facts 2014, an Online Reference" Enlace: http://www.plasticseurope.org/Document/plastics-the-facts-2014. aspx. Fecha de Consulta: 13 Febrero 2014.
  7. Lopez, J.; Aguilar, M.; Arraiza, P.; Leon, B. 2009. "Biodegradation ofpaper waste under controlled composting conditions." Waste Management, 29: 1514-1519.
  8. Mezzanotte, V; Bertani, R.; Degli, F.; Tosin, M. 2005. "Influence of inocula on the results of biodegradation tests." Polymer Degradation and Stability, 87: 51-56.
  9. ASTM D5988, 2003. "Standard test methods for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting."
  10. Norma Técnica Ecuatoriana; NTE INEN 2643: 2013 "Especificación para plásticos compostables." Primera Edición.
  11. Hermann, B.; Debeer, L.; Wilde, B.; Blok, K.; Patel, M. 2011. "To compost or not to compost: Carbon and energy footprints of biodegradable materials waste treatment." Polymer Degradation and Stability, 96: 1159-1171.
  12. Vaverková, M.; Toman, F.; Adamcová, D.; Kotoviková, J. 2012. "Study of the Biodegradability of Degradable/Biodegradable Plastic Material in a Controlled Composting Environment." Ecological Chemistry Engineering, 19 (3): 347-358.
  13. Leejarkpai, T.; Suwanmanee, U.; Rudeekit, Y.; Mungcharoen, T. 2011. "Biodegradable kinetics of plastics under controlled composting conditions." Waste Management, 31: 1153-1161.
  14. Larsen, J.; Venkova, S. 2014. "The downfall of the plastic bag: A global picture." Earth Policy Institute. Enlace: http://www.earth-policy.org/plan_b_updates/2014/update123. Fecha de Consulta: 25 de junio del 2014.
  15. AlMaadeed, M.; Ouedemi, M.; Noorunnisa, P. 2013. "Effect of chain structure on the properties of Glass Fibre/polyethylene composites." Material and Design, 47: 725-730.
  16. Sihama, S.; Abdullkhaliq, H.; Alyaa, A. 2013. "Comparison of the characteristics of LDPE: PP and HDPE: PP Polymer Blends." Modern Applied Science, 7 (3).
  17. Sivan, A. 2011. "New perspectives in plastic biodegradation." Current opinion in Biotechnology, 22: 422-426.
  18. Koitabashi, M.; Noguchi, M.; Sameshima, Y.; Hiradate, S.; Suzuki, K.; Yoshida, S.; Watanabe, T.; Shinozaki, Y.; Tsushima, S.; y Kitamoto, H. 2012. "Degradation of biodegradable plastic mulch films in soil environment by phylloplane fungi isolated from gramineous plants" AMB Express, 2: 40-50.
  19. Ortuño, A. 1995. "Introducción a la Química Industrial." 2da. Ed. España: Reverté.
  20. Arminen, H.; Hujala, M.; Puumalainen, K.; Tuppura, A.; Toppinnen, A. 2013. "An update on inter-country differences in recovery and utilization of recycled paper." Resource, Conservation and Recycling, 78: 124-135.
  21. Kacik, F.; Kacikova, D.; Jablonsky, M.; Katuscak, S. 2009. "Cellulose degradation in newsprint paper ageing." Polymer Degradation and Stability, 94: 1509-1514.
  22. Béguin, P.; Aubert, J. 1994. "The biological degradation of cellulose." FEMS Microbiology Reviews, 13: 25-58.
  23. Rastogi, S.; Dwivedi, U. 2014. "Lignin genetic engineering for improvement of wood quality: Applications in paper and textile industries, fodder and bioenergy production." South African of Botany, 91: 107-125.
  24. SCA. 2010. "Fabricación de papel." Soporte técnico de los papeles para SCA Publication Papers.
  25. Leja, K.; Lewandowicz, G. 2010. "Polymer Biodegradation and Biodegradable Polymers." Polish Journal of Environ. Stud., 19 (2): 255-266.
  26. Pagga, U.; Beimborn, D.; Boelens, J.; Wilde, B. 1995. "Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test." Chemosphere, 31: 4475-4487.
  27. Ren, X. 2003. "Biodegradable plastics: a solution or a challenge?" Journal of Cleaner Production, 11: 27-40.
  28. European Committee for Standarization, EN 13432. 2000. "Packaging-Requirements for packaging recoverable through composting and biodegradation-Test scheme and evaluation criteria for the final acceptance of packaging, European Standard." European Committee for Standaridization. Brussels, Belgium.
  29. ASTM, D6400-04. "2004 Standard Specification for Composttable Plastics." ASTM: West Conshohocken, PA.
  30. Clesceri, L.; Greenberg, A.; Eaton, A. 1998. "Standard methods for the examination of water and wastewater." 20va. Ed. Baltimore: Maryland Composition Company.
  31. Norma Técnica Ecuatoriana NTE INEN 2640: 2012 "Método de ensayo para determinar la biodegradación aeróbica de materiales plásticos bajo condiciones controladas de compostaje." Primera Edición.
  32. Norma Técnica Ecuatoriana NTE INEN 2644: 2013 "Guía para la exposición y ensayo de plásticos que se degradan e el ambiente por una combinación de oxidación y biodegradación." Primera Edición.
  33. Norma Técnica Ecuatoriana NTE INEN 2642: 2012 "Método de ensayo para determinar la degradación aeróbica en el suelo de los materiales plásticos o de materiales plásticos residuales después de compostaje." Primera Edición.