Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 7 No. 1 (2015)

Abundance patterns and components richness of biological soil crust in a dry shrubland in southern Ecuador

DOI
https://doi.org/10.18272/aci.v7i1.228
Submitted
November 24, 2015
Published
2015-05-22

Abstract

Biological soil crusts (BSCs) result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens, and bryophytes. Important advances in the understanding of BSC and their key role in ecosystem processes in dry lands are widely known. However, little is known about the small-scale patterns of abundance and distribution of BSC-forming lichens, mosses and cyanobacteria in South America, particularly in Ecuador. In order to fill this important information gap, we set to identify patterns of abundance and richness of mosses and lichens forming BSC along the elevation gradient of dry southern Ecuador. To reach our objective, we identify three levels at 1400, 1500 and 1600 m elevation. At each level, we selected 180 subplots (60 per elevation level). Each subplot (25 × 25 cm quadrat) was divided into 5 × 5 cm, spread over a homogeneous area of 1.5 ha. The richness and cover of species forming BSC (lichens, mosses and cyanobacteria) were estimated. We conducted a variance analysis to evaluate the effect of elevation on the richness and diversity of species. We found 24 species in the three elevation levels, sixteen lichens (two are first reports for Ecuador), five mosses, two cyanobacteria, and one pteridophyta. Our results clearly show that the species richness of BSC respond to elevation. Our research becomes the first report of BSC in Ecuador and adds new information on the abundance and species richness of BSC.

viewed = 1777 times

References

  1. Belnap, J.; Lange, O., 2003. Biological Soil Crusts: Structure Function and Management. Springer-Verlag: Berlin.
  2. Soule, T.; Anderson, I. J.; Johnson, S. L.; Bates, S. T.; Garcia-Pichel, F. 2009. "Archaeal populations in biological soil crusts from arid lands in North America." Biología del Suelo y Bioquímica, 41 (10): 2069-2074. DOI: http://dx.doi.org/10.1016/j.soilbio.2009.07.023.
  3. Lange, O. L.; Kidron, G.; Büdel B.; Meyer, A.; Kilian, E.; Abeliovich, A.; 1992. "Taxonomic composition and photosynthetic characteristics of the "biological soil crusts covering sand dunes in the western Negev Desert." Functional Ecology, 6: 519-527.
  4. Belnap, J. 2002. "Nitrogen fixation in biological soil crusts from southeast Utah, USA." Biology and Fertility of Soils, 35 (2): 128-135. DOI: http://dx.doi.org/10.1007/s00374-002-0452-x.
  5. Chaudhary, V. B.; Bowker, M.; O"™Dell, T. E.; Grace, J. B.; Redman, A. E.; Rillig, M. C.; Johnson, N. C. 2009. "Untangling the biological contributions to soil stability in semiarid shrublands." Ecological Applications, 19 (1): 110-22. DOI: http://dx.doi.org/10.1890/07-2076.1.
  6. Castillo-Monroy, A. P.; Maestre, F. T.; Delgado-Baquerizo, M.; Gallardo, A. 2010. "Biological soil crusts modulate nitrogen availability in semiarid ecosystems: insights from a Mediterranean grassland." Plant and Soil, 333 (1-2): 21-34. DOI: http://dx.doi.org/10.1007/s11104-009-0276-7.
  7. Castillo-Monroy, A. P.; Maestre, F. T.; Rey, A.; Soliveres, S.; García-Palacios, P. 2011. "Biological Soil Crust Microsites Are the Main Contributor to Soil Respiration in a Semiarid Ecosystem." Ecosystems, 14 (5): 835-847. DOI: http://dx.doi.org/10.1007/s10021-011-9449-3.
  8. Eldridge, D.; Bowker, M.; Maestre, F.; Alonso, P.; Mau, R.; Papadopoulos, J.; Escudero, A. 2010. "Interactive Effects of Three Ecosystem Engineers on Infiltration in a Semi-Arid Mediterranean Grassland." Ecosystems, 13 (4): 499-510. DOI: http://dx.doi.org/10.1007/s10021-010-9335-4.
  9. Delgado-Baquerizo, M.; Covelo, F.; Maestre, F. T.; Gallardo, A. 2013. "Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean grassland." Journal of Arid Environments, 91: 147-150. DOI: http://dx.doi.org/10.1016/jjaridenv.2013.01.005.
  10. Prasse, R.; Bornkamm, R. 2000. "Effect of microbiotic soil surface crusts on emergence of vascular plants." Plant Ecology, 150: 65-75. DOI: http://dx.doi.org/10.1023/A:1026593429455.
  11. DeFalco, L. A.; Detling, J. K.; Tracy, C. R.; Warren, S. D. 2001. "Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert." Plant and Soil, 234 (1): 1-14. DOI: http://dx.doi.org/10.1023/A:1010323001006.
  12. Shepherd, U.; Brantley, S.; Tarleton, C. 2002. "Species richness and abundance patterns of microarthropods on cryptobiotic crusts in a piñon-juniper habitat: a call for greater knowledge." Journal of Arid Environments, 52: 349-360. DOI: http://dx.doi.org/10.1006/jare.2002.1003.
  13. Maestre, F.; Bowker, M.; Cantón, Y.; Castillo-Monroy, A. P.; Cortina, J.; Escolar, C.; Escudero, A.; Lázaro, R.; Martínez, I. 2011. "Ecology and functional roles of biological soil crusts in semiarid ecosystems of Spain." Journal of Arid Environments, 75 (12): 1282-1291. DOI: http://dx.doi.org/10.1016/j.jaridenv.2010.12.008.
  14. Pointing, S. B.; Belnap, J. 2012. "Microbial colonization and controls in dryland systems." Nature Reviews Microbiology, 10 (8): 551-562. DOI: http://dx.doi.org/10.1038/nrmicro283.
  15. Rivera-Aguilar, V.; Montejano, G.; Rodríguez-Zaragoza, S.; Durán-Díaz, A. 2006. "Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crust of the Tehuacan Valley, Puebla, México." Journal of Arid Environments, 67: 208-225. DOI: http://dx.doi.org/10.1016/jjaridenv.2006.02.013.
  16. Büdel, B.; Darienko, T.; Deutschewitz, K.; Dojani, S.; Friedl, T.; Mohr, K. I.; Salisch, M.; Reisser, W.; Weber, B. 2009. "Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency." Microbial Ecology, 57 (2): 229-247. DOI: http://dx.doi.org/10.1007/s00248-008-9449-9.
  17. Castillo-Monroy, A. P.; Maestre, F. T. 2011. "La costra biológica del suelo: Avances recientes en el conocimiento de su estructura y función ecológica." Revista chilena de historia natural, 84 (1): 1-21. DOI: http://dx.doi.org/10.4067/S0716-078X2011000100001.
  18. Toledo, V.; Florentino de Andreu, A. 2012. "Evaluación de las propiedades biológicas y bioquímicas de la costra microbiotica de un suelo bajo vegetación natural en la región árida de Quíbor, Venezuela." Revista de investigación, 75: 143-163.
  19. Lomolino, M. V. 2001. "Elevation gradients of species-density: historical and prospective views." Global Ecology and Biogeography, 10 (1): 3-13. DOI: http://dx.doi.org/10.1046/j.1466-822x.2001.00229.x.
  20. Rahbek, C. 1995. "The elevational gradient of species richness: a uniform pattern?." Ecography, 18 (2): 200-205. DOI: http://dx.doi.org/10.1111/j.1600-0587.1995.tb00341.x.
  21. McCain, C. M.; Grytnes, J. A. 2010. "Elevation gradient in species richness." En: eLS. John Wiley & Sons Ltd, Chichester, http://www.els.net, DOI: http://dx.doi.org/10.1002/9780470015902.a0022548.
  22. Sun, H.; Wu, Y.; Yu, D.; Zhou, J. 2013. "Altitudinal gradient of microbial biomass phosphorus and its relationship with microbial biomass carbon, nitrogen, and rhizosphere soil phosphorus on the eastern slope of Gongga Mountain, SW China." PLoS One, 8 (9). e72952. DOI: http://dx.doi.org/10.1371/journal.pone.0072952.
  23. Baniya, C. B.; Solh0y, T.; Gauslaa, Y.; Palmer, M. W. 2010. "The elevation gradient of lichen species richness in Nepal." Lichenologist, 42 (1): 83-96. DOI: http://dx.doi.org/10.1017/S0024282909008627.
  24. Choudhary, K. K.; Singh, R. K. 2013. "Cyanobacterial diversity along altitudinal gradient in Eastern Himalayas of India." Journal of alga biomass utilization, 4 (2): 53-58.
  25. Grime, J. P. 1973. "Control of species density in herbaceous vegetation." Journal of Environmental Management, 1: 151-167.
  26. Espinosa, C. I.; Luzuriaga, A. L.; de la Cruz, M.; Montero, M.; Escudero, A. 2013. "Co-occurring grazing and climate stressors have different effects on the total seed bank when compared to the persistent seed bank." Journal of Vegetation Science, 24 (6): 1098-1107. DOI: http://dx.doi.org/10.1111/jvs.12043.
  27. Cabrera, O.; Prina, A. 2013. "Euphorbia weberbaueri (Euphorbiaceae), nuevo registro para Ecuador." Boletín de la Sociedad Argentina de Botánica, 48 (1): 137-141.
  28. Sierra, R. 1999. "Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental", Rimana: Quito.
  29. Maestre, F.; Escudero, A.; Martinez, I.; Guerrero, C.; Rubio, A. 2005. "Does spatial pattern matter to ecosystem functioning?." Functional Ecology, 19: 566-573. DOI: http://dx.doi.org/10.1111/j.1365.
  30. Martinez, I.; Escudero, A.; Maestre, F.; de la Cruz, A.; Guerrero, C.; Rubio, A. 2006. "Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semiarid gypsum environments." Australian Journal of Botany, 54 (4): 339-348. DOI: http://dx.doi.org/10.1071/BT05078.
  31. Bowker, M. A.; Johnson, N. C.; Belnap, J.; Koch, G. W. 2008. "Short-term monitoring of aridland lichen cover and biomass using photography and fatty acids." Journal of Arid Environments, 72 (6): 869-878. DOI: http://dx.doi.org/10.1016Zj.jaridenv.2007.11.006.
  32. Gradstein, S. R.; Churchill, S. P.; Salazar, A. N. 2001. "Guide to the Bryophytes of tropical America." Memoirs of the New York Botanical Garden, 86: 1-577.
  33. León-Yánez, S.; Gradstein, S. R.; Wegner, C. 2006. "Hepáticas (Marchantiophyta) y Antoceros (Anthocerotophyta) del Ecuador, catálogo." Publicaciones del Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.
  34. Churchill, S. P.; Griffin, D.; Muñoz J. 2000. A Checklist of the mosses of the tropical Andean countries. Ruizia, 17: 1-203.
  35. Nash III, T. H.; Ryan, B. D.; Gries, C.; Bungartz, F. (eds.) 2002. "Lichen Flora of the Greater Sonoran Desert Region." Vol. I. Tempe: Lichens Unlimited, pp. 532.
  36. Colwell, R. K. 2013. "Statistical estimation of species richness and share species from samples." Enlace: http://viceroy.eeb.uconn.edu/estimates/
  37. Benitez, A.; Prieto, M.; González, Y; Aragón, G. 2012. "Effects of tropical montane forest disturbance on epiphytic macrolichens." Science of the Total Environment, 441: 169-175. DOI: http://dx.doi.org/10.1016/j.scitotenv.2012.09.072.
  38. Concostrina-Zubiri, L.; Martínez, I.; Rabasa, S.; Escudero, A. 2014. "The influence of environmental factors on biological soil crust: from a community perspective to a species level approach." Journal of vegetation science, 25 (2): 503-513. DOI: http://dx.doi.org/10.1111/jvs.12084.
  39. Belnap, J.; Phillips, S. L.; Troxler, T. 2006. "Soil lichen and moss cover and species richness can be highly dynamic: The effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah." Applied Soil Ecology, 32 (1): 63-76. DOI: http://dx.doi.org/10.1016/j.apsoil.2004.12.010.
  40. Gómez, D. A.; Aranibar, J. N.; Tabeni, S.; Villagra, P. E.; Garibotti, I. A.; Atencio, A. 2012. "Biological soil crust recovery after long-term grazing exclusion in the Monte Desert (Argentina). Changes in coverage, spatial distribution, and soil nitrogen." Acta Oecologica, 38: 33-40. DOI: http://dx.doi.org/10.1016/j.actao.2011.09.001.
  41. Iturriaga, G.; Gaff, D.; Zentella, R. 2000. "New desiccation-tolerant plants, including a grass, in the central highlands of Mexico, accumulate trehalose." Australian Journal of Botany, 48 (2): 153-158. DOI: http://dx.doi.org/10.1071/BT98062.
  42. Zhao, J.; Zheng, Y.; Zhang, B.; Chen, Y.; Zhang, Y. 2009. "Progress in the study of algae and mosses in biological soil crusts." Frontiers of Biology in China, 4 (2): 143-150. DOI: http://dx.doi.org/10.1007/s11515-008-0104-0.
  43. Ullmann, I.; Büdel, B. 2003. "Ecological determinants of species composition of biological soil crusts on a landscape scale." Biological soil crusts: structure, function, and management. Springer-Verlag: Berlin.
  44. Garcia-Pichel, F.; López-cortés, A.; Nubel, U. 2001. "Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau." Applied and Environmental Microbiology, 67 (4): 1902-1910. DOI: http://dx.doi.org/10.1128/AEM.67.4.1902.
  45. Austrheim, G. 2002. "Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway." Plant Ecology, 161 (2): 193-205. DOI: http://dx.doi.org/10.1023/A:1020315718720.
  46. Bruun, H. H.; Moen, J.; Virtanen, R.; Grytnes, J. A.; Oksanen, L.; Angerbjorn, A. 2006. "Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities." Journal of Vegetation Science, 17 (1): 37-46. DOI: http://dx.doi.org/10.nn/j.1654-1103.2006.tb02421.x.