The study of physical oceanographic variables is a topic of great interest for understanding other relevant processes like chemical, biological, heat transfer, among others. In the in the Galapagos Islands in particular, knowledge about these processes is a key issue to understanding its biodiversity and equilibrium, unique in the world. Among the most basic physical phenomena driving the whole physical regime, wind waves and tidal circulation are the dominant and can explain largely secondary fundamental processes like transport phenomena (e.g., larvae, plankton, fish, sediments, chemicals, heat, among others), which in turn have a direct impact over ecosystems. In the present paper, several preliminary developments for the implementation of the “Advanced Three Dimensional Circulation Model” (ADCIRC) are documented.
An important aspect detailed here is the design and development of computational grids, a non-trivial pre-processing set of steps that requires bathymetry and mesh homogenization to guarantee the proper representation of physical process by the model, and to avoid numerical instabilities in the downstream operations. Several algorithms have been developed to this end and are presented here. With these developments, a preliminary implementation of ADCIRC was carried out to check the grids functionality.
viewed = 713 times