Es Ingeniero Agrícola graduado en la Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López (ESPAM MFL), actualmente es estudiante de la maestría en Ingeniería Agrícola Mención Fitotecnia de la ESPAM FML. Desarrolló sus actividades de investigación de tesis de maestría en el proyecto institucional “Alternativas tecnológicas para potenciar la conservación del suelo y la productividad agrícola de ladera y secano en Manabí”. En ámbito laboral se desempeña como asesor técnico de fincas privadas en cultivos como cacao, maíz y plátano.
Instituto Nacional de Investigaciones Agropecuarias – INIAP
Ingeniero Agrónomo graduado en la Universidad Técnica de Manabí con Maestría en Agronomía Mención Producción Agrícola Sostenible de la Universidad Técnica de Manabí. Ha publicado artículos en cultivos tropicales y colaborado en libros y publicaciones en plátano, maíz, yuca e higuerilla, actividades de investigación, validación, transferencia tecnológica y capacitación. Ha laborado en Empresa Privada y Proyectos de Investigación y capacitación. Acreditado por SENESCYT, actualmente labora en el Instituto Nacional de Investigaciones Agropecuarias INIAP desde el año 2009, Responsable del Núcleo de Desarrollo Tecnológico de la Estación Experimental Portoviejo desde el año 2016.
Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López
Es Ingeniero Agrónomo graduado en la Universidad Técnica de Manabí. Es Magíster en Ciencias Agrícolas graduado en la Universidad Nacional Agraria La Molina, Lima, Perú. Es doctorando del Programa Internacional en Agricultura y Medio Ambiente para el Desarrollo de la Universidad de Santiago de Compostela, España. Es docente de Fisiología y Nutrición Vegetal en la carrera de Ingeniería Agrícola de la ESPAM MFL. Ha dirigido más de 20 tesis de pregrado y siete de maestría. Ha publicado 27 artículos científicos. Es líder de varios proyectos de investigación y vinculación. Fue becario del Departamento de Protección Vegetal en la Estación Experimental Tropical Pichilingue del INIAP desde abril del 2009 a diciembre del 2010. Fue investigador del Programa Nacional de Banano, Plátano y Otras Musáceas de la Estación Experimental Tropical Pichilingue del INIAP desde el 2011 al 2013. Su línea de investigación es la agricultura de secano, la fisiología y nutrición de cultivos.
Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López
Es Ingeniera Agroindustrial de la Pontificia Universidad Católica del Ecuador. Es Magister en Administración y Mercadeo Agropecuario de la Universidad Laica Eloy Alfaro de Manabí. Es Doctora en Recursos Naturales y Gestión Sostenible por la Universidad de Córdoba, España. Es docente de extensión rural y postcosecha en la carrera de Ingeniería Agrícola de la ESPAM MFL. Ha dirigido varias tesis de pregrado y es autora de varios artículos científicos. Ha participado en varios eventos científicos como ponente. Ha dirigido varios proyectos de investigación relacionados a calidad y postcosecha. Su línea de investigación se centra en la postcosecha de productos agrícolas y la bioeconomía.
Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López
Ingeniero Agropecuario, graduado de la Universidad de las Fuerzas Armadas- ESPE, con maestría (MSc) en Fitomejoramiento y Manejo de Recursos Genéticos (Wageningen University), doctorado (PhD) en Genética Vegetal (The Ohio State University). Ha publicado más de cien estudios en cultivos de maíz, soya, cacao, chirimolla y mora, en las áreas de genética, fitomejoramiento, fitopatología, biofertilizantes, recursos fitogenéticos, impacto tecnológico y prospección científica. Se ha desempeñado como Director de Investigaciones y de Gestión del Conocimiento en el Instituto Nacional de Investigaciones Agropecuarias (INIAP); además, ha sido consultor para el Banco Interamericano de Desarrollo (BID) – FONTAGRO y docente en la Universidad de las Fuerzas Armadas en la carrera de Ingeniería Agropecuaria (IASA II). Actualmente es Investigador Principal 3 (Categorizado por la Secretaria Nacional de Educación Superior, Ciencia, Tecnología e Innovación – SENESCYT), Responsable del Programa de Maíz y Coordinador Nacional de Investigación de Maíz y Coordinador de la Red Latinoamericana del Maíz.
El consumo de maíz en fresco, tierno o choclo es muy importante en ciertas zonas costeras del litoral ecuatoriano. El propósito principal del estudio fue analizar la efectividad de la fertilización líquida y la bioestimulación en el rendimiento y la rentabilidad del maíz INIAP 543 – QPM destinado al consumo en forma de choclo. El trabajo se ejecutó durante las temporadas lluviosas 2021 y 2022, que se desarrollan de enero a mayo, en las localidades El Cady de Portoviejo, Danzarín de Rocafuerte y El Limón de Bolívar, ubicadas en las coordenadas 1°07’14.6”S - 80°24’39.7”W, 0°54’42.0”S - 80°24’17.4”W y 0°49’49.1”S - 80°10’48.6”W, respectivamente. Los tratamientos evaluados fueron la fertilización líquida + bioestimulación (FL + BIO), fertilización granulada + bioestimulación (FG + BIO), fertilización granulada (FG) y un tratamiento control sin fertilización ni bioestimulación. Se utilizó un diseño de bloques completos al azar, con cuatro tratamientos y cinco repeticiones. Se registró el rendimiento de mazorcas (RM), eficiencia agronómica del nitrógeno (EAN) y rentabilidad económica. Los tratamientos influyeron de manera significativa (p<0,05) en el RM y la EAN en ambas temporadas de siembra y en las tres localidades evaluadas. Los tratamientos de FL + BIO y FG + BIO lograron mayor RM con promedios de 9,00 y 8,43 t ha-1, con respecto a los tratamientos de FG y control con 7,76 y 3,26 t ha-1, respectivamente. De forma similar, en promedio la EAN fue mayor en los tratamientos FL + BIO y FG + BIO con 38,26 y 34,47 kg de mazorcas kg-1 de N aplicado, en contraste al tratamiento de FG que logró una EAN promedio de 30,01 kg de mazorcas kg-1 de N aplicado. Por otra parte, La FL + BIO logró mayores aumentos en RM y EAN con respecto a la FG + BIO. La rentabilidad económica en promedio fue de 0,78 y 0,73 dólares por cada dólar invertido en los tratamientos FL + BIO y FG + BIO, respectivamente, en comparación con la rentabilidad de los tratamientos FG y control, que lograron ganancias de 0,66 y 0,42 dólares, respectivamente, por cada dólar invertido. Los resultados logrados permiten concluir, que bajo condiciones de secano, donde la humedad superficial del suelo depende de las lluvias, y no siempre hay garantía de que se mantenga a capacidad de campo constante. En esas condiciones, la fertilización edáfica aplicada de manera diluida puede ser más eficiente y conveniente que la granulada aplicada en banda superficial. Además, bajo condiciones de temporal o secano, la bioestimulación es una tecnología que contribuye a potenciar la fertilización edáfica del maíz, siendo económicamente viable su aplicación.
viewed = 277 times
Citas
Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. (2022). Global maize production, consumption and trade: trends and implications. Food Security, 14(5), 1295–1319. https://doi.org/10.1007/s12571-022-01288-7
Analuisa, I., Jimber del Río, J., Fernández, J., & Vergara, A. (2023). La cadena de valor del maíz amarillo duro ecuatoriano. Retos y oportunidades. Lecturas de Economía, 98, 231-262. https://doi.org/10.17533/udea.le.n98a347315
Alarcón, D., Limongi, J., Zambrano, E., & Navarrete, B. (2019). Desarrollo de una variedad de maíz tropical de grano blanco con calidad de proteína para consumo en fresco. Avances en Ciencias e Ingenierías, 11(17), 30-39. https://doi.org/10.18272/aci.v11i1.1101
Eguez, J., Pintado, P., Ruilova, F., Zambrano, J., Villavicencio, J., Caicedo, M., Alarcón, D., Zambrano, E., Limongi, J., Yánez, C., Narro, L., & San Vicente, F. (2019). Desarrollo de un híbrido de maíz de grano blanco para consumo en fresco en Ecuador. Avances en Ciencias e Ingenierías, 11(17), 46-53. https://doi.org/10.18272/aci.v11i1.1102
Thielen, D., Cevallos, J., Erazo, T., Zurita, I., Figueroa, J., Velásquez, E., Matute, N., Quintero, J., & Puche, M. (2016). Dinámica espacio-temporal de las precipitaciones durante el evento de El Niño 97/98 en la cuenca de Río Portoviejo, Manabí, costa ecuatoriana del Pacífico. Revista de Climatología, 16, 35–50. https://www.climatol.eu/reclim/reclim16c.pdf
Pérez, R., Cabrera, E., & Hinostroza, M. (2018). The Irrigation Regime for Crops in Manabí, Ecuador: Climatological Study. Revista Ciencias Técnicas Agropecuarias, 27(1), 5–12. http://scielo.sld.cu/pdf/rcta/v27n1/rcta01118.pdf
Zambrano, E., Rivadeneira, J., & Pérez, M. (2018). Linking El Niño southern oscillation for early drought detection in tropical climates: The Ecuadorian coast. Science of the Total Environment, 643, 193–207. https://doi.org/10.1016/j.scitotenv.2018.06.160
Miró, J., Estrela, M., Corell, D., Gómez, I., & Luna, M. (2023). Precipitation and drought trends (1952–2021) in a key hydrological recharge area of the eastern Iberian Peninsula. Atmospheric Research, 286, 106695. https://doi.org/10.1016/j.atmosres.2023.106695
Speer, M., Hartigan, J., & Leslie, L. (2024). Machine learning identification of attributes and predictors for a flash drought in eastern Australia. Climate, 12(4), 49. https://doi.org/10.3390/cli12040049
Amissah, S., Ankomah, G., Lee, R., Perry, C., Washington, B., Porter, W., Virk, S., Bryant, C., Vellidis, G., Harris, G., Cabrera, M., Franklin, D., Diaz-Perez, J., & Sintim, H. (2024). Assessing corn recovery from early season nutrient stress under different soil moisture regimes. Frontiers in Plant Science, 15, 1344022. https://doi.org/10.3389/fpls.2024.1344022
Siman, F., Andrade, F., & Passos, R. (2020). Nitrogen fertilizers and NH3 volatilization: effect of temperature and soil moisture. Communications in Soil Science and Plant Analysis, 51(10). https://doi.org/10.1080/00103624.2020.1763384
Lisboa, M., Schneider, R., Sullivan, P., & Walter, T. (2020). Drought and post-drought rain effect on stream phosphorus and other nutrient losses in the Northeastern USA. Journal of Hydrology: Regional Studies, 28, 100672. https://doi.org/10.1016/j.ejrh.2020.100672
Mahmud, K., Panday, D., Mergoum, A., & Missaoui, A. (2021). Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability, 13, 2400. https://doi.org/10.3390/su13042400
Yao, Y., Dai, Q., Gao, R., Gan, Y., & Yi, X. (2021). Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS ONE, 16(3), e0246505. https://doi.org/10.1371/journal.pone.0246505
Furtak, K., & Wolińska, A. (2023). The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review. Catena, 231, 107378. https://doi.org/10.1016/j.catena.2023.107378
IPNI (International Plant Nutrition Institute). (2012). 4R Plant nutrition manual: a manual for improving the management of plant nutrition, Metric Versión. (T.W. Bruulsema, P.E. Fixen, G.D. Sulewski, eds.), International Plant Nutrition Institute, Norcross, GA, EE.UU.
Plett, D., Ranathunge, K., Melino, V., Kuya, N., Uga, Y., & Kronzucker, H. (2020). The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 71(15), 4452–4468. https://doi.org/10.1093/jxb/eraa049
Weeks, J., & Hettiarachchi, G. (2019). A review of the latest in phosphorus fertilizer technology: Possibilities and Pragmatism. Journal of Environmental Quality, 48, 1300–1313. https://doi.org/10.2134/jeq2019.02.0067
Bogusz, P., Rusek, P., & Brodowska, M. (2021). Suspension fertilizers: how to reconcile sustainable fertilization and environmental protection. Agriculture, 11(10), 1008. https://doi.org/10.3390/agriculture11101008
Motasim, A., Samsuri, A., Sukor, A., & Amin, A. (2022a). Split application of liquid urea as a tool to nitrogen loss minimization and NUE improvement of corn – A review. Chilean Journal of Agricultural Research, 82(4), 645-657. https://doi.org/10.4067/S0718-58392022000400645
Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on crops: their impact under abiotic stress conditions. Horticulturae, 8, 189. https://doi.org/10.3390/horticulturae8030189
Mandal, S., Anand, U., López-Bucio, J., Manoj Kumar, R., Kumar Lal, M., Kumar Tiwari, R., & Dey, A. (2022). Integrated nutrient management and food security in agriculture: understanding the role of plant rhizosphere interactions. Frontiers in Plant Science, 13, 942874. https://doi.org/10.3389/fpls.2022.942874
Luiz, G., Ferreira, S., Lustosa, R., Dos Santos, O. F., Vendruscolo, E., Jacinto de Oliveira, J., do Nascimento de Araújo, T., Mubarak, K., Finatto, T., & AbdElgawad, H. (2023). Biostimulants in corn cultivation as a means to alleviate the impacts of irregular water regimes induced by climate change. Plants, 12(13), 2569. https://doi.org/10.3390/plants12132569
Arifin, Z. (2019). The effect of liquid NPK fertilizing on corn plants. International Conference on Biology and Applied Science (ICOBAS). AIP Conference Proceedings, 2120 (1). https://doi.org/10.1063/1.5115617
Ren, B., Guo, Y., Liu, P., Zhao, B., & Zhang, J. (2021). Effects of urea-ammonium nitrate solution on yield, n2o emission, and nitrogen efficiency of summer maize under integration of water and fertilizer. Frontiers in Plant Science, 12, 700331. https://doi.org/10.3389/fpls.2021.700331
Motasim, A., Samsuri, A., Sukor, A., & Amin, A. (2022). Effects of liquid urea application frequency on the growth and grain yield of corn (Zea mays L.). Communications in Soil Science and Plant Analysis, 53(17), 2245–2256. https://doi.org/10.1080/00103624.2022.2071435
Kapela, K., Sikorska, A., Niewęgłowski, M., Krasnodębska, E., Zarzecka, K., & Gugała, M. (2020). The impact of nitrogen fertilization and the use of biostimulants on the yield of two maize varieties (Zea mays L.) cultivated for grain. Agronomy, 10(9), 1408. https://doi.org/10.3390/agronomy10091408
Martínez, A., Zamudio, B., Tadeo, M., Espinosa, A., Cardoso, J., & Vázquez, M. (2022). Rendimiento de híbridos de maíz en respuesta a la fertilización foliar con bioestimulantes. Revista Mexicana de Ciencias Agrícolas, 13(2), 289-301. https://doi.org/10.29312/remexca.v13i2.2782
Ocwa, A., Mohammed, S., Mousavi, S., Illés, A., Bojtor, C., Ragán, P., Rátonyi, T., & Harsányi, E. (2024). Maize grain yield and quality improvement through biostimulant application: a systematic review. Journal of Soil Science and Plant Nutrition, 1-41. https://doi.org/10.1007/s42729-024-01687-z
Ayvar-Serna, S., Díaz-Nájera, J. F., Vargas-Hernández, M., Mena-Bahena, A., Tejeda-Reyes, M. A., & Cuevas-Apresa, Z. (2020). Profitability of grain and fodder production systems of corn hybrids, with biological and chemical fertilization in dry tropic. Terra Latinoamericana, 38(1), 9-16. https://doi.org/10.28940/terra.v38i1.507
Budiono, R., Asnita, R., Noerwijati, K., Gamawati, P., & Anwar, S. (2023). Sweet corn growth and productivity on several levels dosage of liquid NPK fertilizer. E3S Web of Conferences, 432, 00031. https://doi.org/10.1051/e3sconf/202343200031
Walsh, O., & Christiaens, R. (2016). Relative efficacy of liquid nitrogen fertilizers in dryland spring wheat. International Journal of Agronomy, 2016, 6850672. https://doi.org/10.1155/2016/6850672
Da Silva, M., Junqueira, H., & Graziano, P. (2017). Liquid fertilizer application to ratoon cane using a soil punching method. Soil and Tillage Research, 165, 279-285. https://doi.org/10.1016/j.still.2016.08.020
Erenoğlu, E., & Dündar, S. (2020). Application of liquid phosphorus fertilizer improves the availability of phosphorus in calcareous soils. Applied Ecology and Environmental Research, 18, 3615-3626. http://dx.doi.org/10.15666/aeer/1802_36153626
Castro, S., Coelho, A., Souza Chiachia, T., Castro, R., & Lemos, L. (2023). Fertilizer source and application method influence sugarcane production and nutritional status. Frontiers in Plant Science, 14, 1099589. https://doi.org/10.3389/fpls.2023.1099589
Atta, M., Abdel-Lattif, H., & Absy, R. (2017). Influence of biostimulants supplement on maize yield and agronomic traits. Bioscience Research, 14(3), 604–615.
Ali, S., Jan, A., Manzoor, Sohail, A., Khan, A., Khan, M., Inamullah, Zhang, J., & Daur, I. (2018). Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agricultural Water Management, 210, 88–95. https://doi.org/10.1016/j.agwat.2018.08.009
Khan, S., Khan, S., Qayyum, A., Gurmani, A., Khan, A., Khan, S., Ahmed, W., Mehmood, A., & Amin, B. (2019). Integration of humic acid with nitrogen wields an auxiliary impact on physiological traits, growth and yield of maize (Zea mays L.) varieties. Applied Ecology & Environmental Research, 17(3), 6783–6799. https://doi.org/10.15666/aeer/1703_67836799
Kapela, K., Sikorska, A., Niewęgłowski, M., Krasnodębska, E., Zarzecka, K., & Gugała, M. (2020). The impact of nitrogen fertilization and the use of biostimulants on the yield of two maize varieties (Zea mays L.) cultivated for grain. Agronomy, 10(9), 1408. https://doi.org/10.3390/agronomy10091408
Li, J., Ma, H., Lei, F., He, D., Huang, X., Yang, H., & Fan, G. (2023). Comprehensive effects of n reduction combined with biostimulants on n use efficiency and yield of the winter wheat–summer maize rotation system. Agronomy, 13(9), 2319. https://doi.org/10.3390/agronomy13092319
Capo, L., Sopegno, A., Reyneri, A., Ujvári, G., Agnolucci, M., & Blandino, M. (2023). Agronomic strategies to enhance the early vigor and yield of maize part II: the role of seed applied biostimulant, hybrid, and starter fertilization on crop performance. Frontiers in Plant Science, 14, 1240313. https://doi.org/10.3389/fpls.2023.1240313