Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN B: CIENCIAS DE LA VIDA

Vol. 16 Núm. 2 (2024)

Efectividad de la fertilización líquida y bioestimulación en el rendimiento y rentabilidad del cultivo de maíz (Zea mays L.) para consumo en fresco

DOI
https://doi.org/10.18272/aci.v16i2.3350
Enviado
junio 6, 2024
Publicado
2024-11-29

Resumen

El consumo de maíz en fresco, tierno o choclo es muy importante en ciertas zonas costeras del litoral ecuatoriano. El propósito principal del estudio fue analizar la efectividad de la fertilización líquida y la bioestimulación en el rendimiento y la rentabilidad del maíz INIAP 543 – QPM destinado al consumo en forma de choclo. El trabajo se ejecutó durante las temporadas lluviosas 2021 y 2022, que se desarrollan de enero a mayo, en las localidades El Cady de Portoviejo, Danzarín de Rocafuerte y El Limón de Bolívar, ubicadas en las coordenadas 1°07’14.6”S - 80°24’39.7”W, 0°54’42.0”S - 80°24’17.4”W y 0°49’49.1”S - 80°10’48.6”W, respectivamente. Los tratamientos evaluados fueron la fertilización líquida + bioestimulación (FL + BIO), fertilización granulada + bioestimulación (FG + BIO), fertilización granulada (FG) y un tratamiento control sin fertilización ni bioestimulación. Se utilizó un diseño de bloques completos al azar, con cuatro tratamientos y cinco repeticiones. Se registró el rendimiento de mazorcas (RM), eficiencia agronómica del nitrógeno (EAN) y rentabilidad económica. Los tratamientos influyeron de manera significativa (p<0,05) en el RM y la EAN en ambas temporadas de siembra y en las tres localidades evaluadas. Los tratamientos de FL + BIO y FG + BIO lograron mayor RM con promedios de 9,00 y 8,43 t ha-1, con respecto a los tratamientos de FG y control con 7,76 y 3,26 t ha-1, respectivamente. De forma similar, en promedio la EAN fue mayor en los tratamientos FL + BIO y FG + BIO con 38,26 y 34,47 kg de mazorcas kg-1 de N aplicado, en contraste al tratamiento de FG que logró una EAN promedio de 30,01 kg de mazorcas kg-1 de N aplicado. Por otra parte, La FL + BIO logró mayores aumentos en RM y EAN con respecto a la FG + BIO. La rentabilidad económica en promedio fue de 0,78 y 0,73 dólares por cada dólar invertido en los tratamientos FL + BIO y FG + BIO, respectivamente, en comparación con la rentabilidad de los tratamientos FG y control, que lograron ganancias de 0,66 y 0,42 dólares, respectivamente, por cada dólar invertido. Los resultados logrados permiten concluir, que bajo condiciones de secano, donde la humedad superficial del suelo depende de las lluvias, y no siempre hay garantía de que se mantenga a capacidad de campo constante. En esas condiciones, la fertilización edáfica aplicada de manera diluida puede ser más eficiente y conveniente que la granulada aplicada en banda superficial. Además, bajo condiciones de temporal o secano, la bioestimulación es una tecnología que contribuye a potenciar la fertilización edáfica del maíz, siendo económicamente viable su aplicación.

viewed = 135 times

Citas

  1. Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. (2022). Global maize production, consumption and trade: trends and implications. Food Security, 14(5), 1295–1319. https://doi.org/10.1007/s12571-022-01288-7
  2. Analuisa, I., Jimber del Río, J., Fernández, J., & Vergara, A. (2023). La cadena de valor del maíz amarillo duro ecuatoriano. Retos y oportunidades. Lecturas de Economía, 98, 231-262. https://doi.org/10.17533/udea.le.n98a347315
  3. Alarcón, D., Limongi, J., Zambrano, E., & Navarrete, B. (2019). Desarrollo de una variedad de maíz tropical de grano blanco con calidad de proteína para consumo en fresco. Avances en Ciencias e Ingenierías, 11(17), 30-39. https://doi.org/10.18272/aci.v11i1.1101
  4. Eguez, J., Pintado, P., Ruilova, F., Zambrano, J., Villavicencio, J., Caicedo, M., Alarcón, D., Zambrano, E., Limongi, J., Yánez, C., Narro, L., & San Vicente, F. (2019). Desarrollo de un híbrido de maíz de grano blanco para consumo en fresco en Ecuador. Avances en Ciencias e Ingenierías, 11(17), 46-53. https://doi.org/10.18272/aci.v11i1.1102
  5. MAG (Ministerio de Agricultura y Ganadería). (2022). Estado del cultivo de maíz amarillo en el Ecuador. Boletín situacional cultivo de maíz amarillo. Quito, Ecuador. http://sipa.agricultura.gob.ec/index.php/maiz/boletines-situacionales-maiz-ecuador
  6. Jiménez, S., Castro, L., Yépez, J., & Wittmer, C. (2012). El impacto del cambio climático en la agricultura de subsistencia del Ecuador. Avances de Investigación, 66: 1–92. https://www.fundacioncarolina.es/wp-content/uploads/2014/08/AI66.pdf
  7. Thielen, D., Cevallos, J., Erazo, T., Zurita, I., Figueroa, J., Velásquez, E., Matute, N., Quintero, J., & Puche, M. (2016). Dinámica espacio-temporal de las precipitaciones durante el evento de El Niño 97/98 en la cuenca de Río Portoviejo, Manabí, costa ecuatoriana del Pacífico. Revista de Climatología, 16, 35–50. https://www.climatol.eu/reclim/reclim16c.pdf
  8. Pérez, R., Cabrera, E., & Hinostroza, M. (2018). The Irrigation Regime for Crops in Manabí, Ecuador: Climatological Study. Revista Ciencias Técnicas Agropecuarias, 27(1), 5–12. http://scielo.sld.cu/pdf/rcta/v27n1/rcta01118.pdf
  9. Zambrano, E., Rivadeneira, J., & Pérez, M. (2018). Linking El Niño southern oscillation for early drought detection in tropical climates: The Ecuadorian coast. Science of the Total Environment, 643, 193–207. https://doi.org/10.1016/j.scitotenv.2018.06.160
  10. INEC (2023). Módulo de información ambiental y tecnificación agropecuaria. Instituto Nacional de Estadísticas y Censos. Boletín técnico 2023. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Encuestas_Ambientales/Modulo_Ambiental_ESPAC/2023/DOC_TEC_MOD_AMB_ESPAC_2023_04.pdf
  11. Miró, J., Estrela, M., Corell, D., Gómez, I., & Luna, M. (2023). Precipitation and drought trends (1952–2021) in a key hydrological recharge area of the eastern Iberian Peninsula. Atmospheric Research, 286, 106695. https://doi.org/10.1016/j.atmosres.2023.106695
  12. Speer, M., Hartigan, J., & Leslie, L. (2024). Machine learning identification of attributes and predictors for a flash drought in eastern Australia. Climate, 12(4), 49. https://doi.org/10.3390/cli12040049
  13. Amissah, S., Ankomah, G., Lee, R., Perry, C., Washington, B., Porter, W., Virk, S., Bryant, C., Vellidis, G., Harris, G., Cabrera, M., Franklin, D., Diaz-Perez, J., & Sintim, H. (2024). Assessing corn recovery from early season nutrient stress under different soil moisture regimes. Frontiers in Plant Science, 15, 1344022. https://doi.org/10.3389/fpls.2024.1344022
  14. Siman, F., Andrade, F., & Passos, R. (2020). Nitrogen fertilizers and NH3 volatilization: effect of temperature and soil moisture. Communications in Soil Science and Plant Analysis, 51(10). https://doi.org/10.1080/00103624.2020.1763384
  15. Lisboa, M., Schneider, R., Sullivan, P., & Walter, T. (2020). Drought and post-drought rain effect on stream phosphorus and other nutrient losses in the Northeastern USA. Journal of Hydrology: Regional Studies, 28, 100672. https://doi.org/10.1016/j.ejrh.2020.100672
  16. Mahmud, K., Panday, D., Mergoum, A., & Missaoui, A. (2021). Nitrogen losses and potential mitigation strategies for a sustainable agroecosystem. Sustainability, 13, 2400. https://doi.org/10.3390/su13042400
  17. Yao, Y., Dai, Q., Gao, R., Gan, Y., & Yi, X. (2021). Effects of rainfall intensity on runoff and nutrient loss of gently sloping farmland in a karst area of SW China. PLoS ONE, 16(3), e0246505. https://doi.org/10.1371/journal.pone.0246505
  18. Furtak, K., & Wolińska, A. (2023). The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture – A review. Catena, 231, 107378. https://doi.org/10.1016/j.catena.2023.107378
  19. IPNI (International Plant Nutrition Institute). (2012). 4R Plant nutrition manual: a manual for improving the management of plant nutrition, Metric Versión. (T.W. Bruulsema, P.E. Fixen, G.D. Sulewski, eds.), International Plant Nutrition Institute, Norcross, GA, EE.UU.
  20. Plett, D., Ranathunge, K., Melino, V., Kuya, N., Uga, Y., & Kronzucker, H. (2020). The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 71(15), 4452–4468. https://doi.org/10.1093/jxb/eraa049
  21. Weeks, J., & Hettiarachchi, G. (2019). A review of the latest in phosphorus fertilizer technology: Possibilities and Pragmatism. Journal of Environmental Quality, 48, 1300–1313. https://doi.org/10.2134/jeq2019.02.0067
  22. Bogusz, P., Rusek, P., & Brodowska, M. (2021). Suspension fertilizers: how to reconcile sustainable fertilization and environmental protection. Agriculture, 11(10), 1008. https://doi.org/10.3390/agriculture11101008
  23. Motasim, A., Samsuri, A., Sukor, A., & Amin, A. (2022a). Split application of liquid urea as a tool to nitrogen loss minimization and NUE improvement of corn – A review. Chilean Journal of Agricultural Research, 82(4), 645-657. https://doi.org/10.4067/S0718-58392022000400645
  24. Franzoni, G., Cocetta, G., Prinsi, B., Ferrante, A., & Espen, L. (2022). Biostimulants on crops: their impact under abiotic stress conditions. Horticulturae, 8, 189. https://doi.org/10.3390/horticulturae8030189
  25. Mandal, S., Anand, U., López-Bucio, J., Manoj Kumar, R., Kumar Lal, M., Kumar Tiwari, R., & Dey, A. (2022). Integrated nutrient management and food security in agriculture: understanding the role of plant rhizosphere interactions. Frontiers in Plant Science, 13, 942874. https://doi.org/10.3389/fpls.2022.942874
  26. Luiz, G., Ferreira, S., Lustosa, R., Dos Santos, O. F., Vendruscolo, E., Jacinto de Oliveira, J., do Nascimento de Araújo, T., Mubarak, K., Finatto, T., & AbdElgawad, H. (2023). Biostimulants in corn cultivation as a means to alleviate the impacts of irregular water regimes induced by climate change. Plants, 12(13), 2569. https://doi.org/10.3390/plants12132569
  27. Arifin, Z. (2019). The effect of liquid NPK fertilizing on corn plants. International Conference on Biology and Applied Science (ICOBAS). AIP Conference Proceedings, 2120 (1). https://doi.org/10.1063/1.5115617
  28. Ren, B., Guo, Y., Liu, P., Zhao, B., & Zhang, J. (2021). Effects of urea-ammonium nitrate solution on yield, n2o emission, and nitrogen efficiency of summer maize under integration of water and fertilizer. Frontiers in Plant Science, 12, 700331. https://doi.org/10.3389/fpls.2021.700331
  29. Motasim, A., Samsuri, A., Sukor, A., & Amin, A. (2022). Effects of liquid urea application frequency on the growth and grain yield of corn (Zea mays L.). Communications in Soil Science and Plant Analysis, 53(17), 2245–2256. https://doi.org/10.1080/00103624.2022.2071435
  30. Kapela, K., Sikorska, A., Niewęgłowski, M., Krasnodębska, E., Zarzecka, K., & Gugała, M. (2020). The impact of nitrogen fertilization and the use of biostimulants on the yield of two maize varieties (Zea mays L.) cultivated for grain. Agronomy, 10(9), 1408. https://doi.org/10.3390/agronomy10091408
  31. Martínez, A., Zamudio, B., Tadeo, M., Espinosa, A., Cardoso, J., & Vázquez, M. (2022). Rendimiento de híbridos de maíz en respuesta a la fertilización foliar con bioestimulantes. Revista Mexicana de Ciencias Agrícolas, 13(2), 289-301. https://doi.org/10.29312/remexca.v13i2.2782
  32. Ocwa, A., Mohammed, S., Mousavi, S., Illés, A., Bojtor, C., Ragán, P., Rátonyi, T., & Harsányi, E. (2024). Maize grain yield and quality improvement through biostimulant application: a systematic review. Journal of Soil Science and Plant Nutrition, 1-41. https://doi.org/10.1007/s42729-024-01687-z
  33. Ayvar-Serna, S., Díaz-Nájera, J. F., Vargas-Hernández, M., Mena-Bahena, A., Tejeda-Reyes, M. A., & Cuevas-Apresa, Z. (2020). Profitability of grain and fodder production systems of corn hybrids, with biological and chemical fertilization in dry tropic. Terra Latinoamericana, 38(1), 9-16. https://doi.org/10.28940/terra.v38i1.507
  34. García, J., & Espinoza, J. (2009). Efecto del fraccionamiento del nitrógeno en la productividad y en la eficiencia agronómica de macronutrientes en maíz. Informaciones Agronómicas, 72, 1-5. http://www.ipni.net/publication/ia-lahp.nsf/0/F6C2CDE6735C18CF852579A0006B1E93/$FILE/Efecto%20del%20Fraccionamiento%20de%20Nitr%C3%B3geno%20en%20la%20Productividad%20.....pdf
  35. Budiono, R., Asnita, R., Noerwijati, K., Gamawati, P., & Anwar, S. (2023). Sweet corn growth and productivity on several levels dosage of liquid NPK fertilizer. E3S Web of Conferences, 432, 00031. https://doi.org/10.1051/e3sconf/202343200031
  36. Walsh, O., & Christiaens, R. (2016). Relative efficacy of liquid nitrogen fertilizers in dryland spring wheat. International Journal of Agronomy, 2016, 6850672. https://doi.org/10.1155/2016/6850672
  37. Da Silva, M., Junqueira, H., & Graziano, P. (2017). Liquid fertilizer application to ratoon cane using a soil punching method. Soil and Tillage Research, 165, 279-285. https://doi.org/10.1016/j.still.2016.08.020
  38. Erenoğlu, E., & Dündar, S. (2020). Application of liquid phosphorus fertilizer improves the availability of phosphorus in calcareous soils. Applied Ecology and Environmental Research, 18, 3615-3626. http://dx.doi.org/10.15666/aeer/1802_36153626
  39. Castro, S., Coelho, A., Souza Chiachia, T., Castro, R., & Lemos, L. (2023). Fertilizer source and application method influence sugarcane production and nutritional status. Frontiers in Plant Science, 14, 1099589. https://doi.org/10.3389/fpls.2023.1099589
  40. Atta, M., Abdel-Lattif, H., & Absy, R. (2017). Influence of biostimulants supplement on maize yield and agronomic traits. Bioscience Research, 14(3), 604–615.
  41. Ali, S., Jan, A., Manzoor, Sohail, A., Khan, A., Khan, M., Inamullah, Zhang, J., & Daur, I. (2018). Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agricultural Water Management, 210, 88–95. https://doi.org/10.1016/j.agwat.2018.08.009
  42. Khan, S., Khan, S., Qayyum, A., Gurmani, A., Khan, A., Khan, S., Ahmed, W., Mehmood, A., & Amin, B. (2019). Integration of humic acid with nitrogen wields an auxiliary impact on physiological traits, growth and yield of maize (Zea mays L.) varieties. Applied Ecology & Environmental Research, 17(3), 6783–6799. https://doi.org/10.15666/aeer/1703_67836799
  43. Kapela, K., Sikorska, A., Niewęgłowski, M., Krasnodębska, E., Zarzecka, K., & Gugała, M. (2020). The impact of nitrogen fertilization and the use of biostimulants on the yield of two maize varieties (Zea mays L.) cultivated for grain. Agronomy, 10(9), 1408. https://doi.org/10.3390/agronomy10091408
  44. Li, J., Ma, H., Lei, F., He, D., Huang, X., Yang, H., & Fan, G. (2023). Comprehensive effects of n reduction combined with biostimulants on n use efficiency and yield of the winter wheat–summer maize rotation system. Agronomy, 13(9), 2319. https://doi.org/10.3390/agronomy13092319
  45. Capo, L., Sopegno, A., Reyneri, A., Ujvári, G., Agnolucci, M., & Blandino, M. (2023). Agronomic strategies to enhance the early vigor and yield of maize part II: the role of seed applied biostimulant, hybrid, and starter fertilization on crop performance. Frontiers in Plant Science, 14, 1240313. https://doi.org/10.3389/fpls.2023.1240313

Artículos más leídos del mismo autor/a