Nanoestructuras inusuales de ácidos nucleicos basados en ADN G-cuádruple

Contenido principal del artículo

Miguel Angel Méndez

Resumen

Se reporta la preparación de un nano-ensamble basado en estructuras de ADN no canónico. Para la nanofabricación de una estructura basada en ADN el auto ensamblaje de ADN G-cuádruple (apareamiento de bases tipo hoogsteen) y ADN de doble cadena (apareamiento de bases tipo Watson-Crick) fueron utilizados. En general, un número importante de nanoestructuras se han construido explotando la capacidad de apareamiento de bases del ADN canónico de doble cadena. Hay formas alternativas para construcción utilizando otros elementos de ADN tales como G-cuadruple, motivos I, o ADN de triple cadena. Como prueba de prinicipio, previamente hemos reportado el uso de ADN de doble cadena (oligonucleótidos de ADN sintéticos cortos) con secciones de sitios no apareados capaz de mediar la formación de secciones tetramoleculares (pruebas G-cuádruple) con la finalidad de ensamblar los componentes en estructuras de alto peso molecular. Gel electroforesis como también microscopia de fuerza atómica muestran la formación de nanofibras. La electroforesis de Gel como el dicroismo circular dan evidencia de la presencia de secciones G-cuádruple. De las imágenes de microscopía de fuerza atómica se estimó que el largo de las estructuras va de 250 a 2000 nm con altitud de 0.45 a 4.0 nm. Aquí presentamos otro ejemplo de tales nanofibras. Sugerimos que metodologías similares pueden ser usa-das para construir nanoestructuras más complejas que saquen provecho de las propiedades de distintos nano-rarezas de ADN para aplicaciones capaces de realizar tareas útiles.

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
Méndez, M. A. (2015). Nanoestructuras inusuales de ácidos nucleicos basados en ADN G-cuádruple. ACI Avances En Ciencias E Ingenierías, 7(2). https://doi.org/10.18272/aci.v7i2.246
Sección
SECCIÓN A: CIENCIAS EXACTAS Y FÍSICAS
Biografía del autor/a

Miguel Angel Méndez, Universidad San Francisco de Quito

Universidad San Francisco de Quito, Escuela de Medicina, Diego de Robles y Via Interoceánica, 17-1200-841, Quito, Ecuador.

Universidad San Francisco de Quito, Grupo de Química Computacional y Teórica (QCT-USFQ), Depto. Ing. Química, Diego de Robles y Via Interoceánica, 17-1200-841, Quito, Ecuador.

Universidad San Francisco de Quito, Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y Via Interoceánica, 17-1200-841, Quito, Ecuador

Citas

[1] Ariga, K. 2015. “Nanoarchitecntonics: a new materials horizon for nanotechnology”. Materials Horizon, 2 (10): 406-413.

[2] Chen, Y.; Groves, B.; Muscat, R.A.; Seeling, G. 2015. “DNA nanotechnology from test tube to cell”. Nature Nanotechnology, 10 (9): 748-760.

[3] Yang, D.; Hartman, M. R.; Derrien, T. L.; An, D.; Yancey, K. G.; Cheng, R.; Ma, M.; Luo, D. 2014. “DNA Materials: Bridging Nanotechnology and Biotechnology”. Acc. Chem. Res., 47 (6): 1902-1911.

[4] Ouldridge, T. E. 2015. “DNA nanotechnology: understanding and optimisation through simulation”. Molecular Physics, 113 (1): 1-15.

[5] Neidel, S. 2009. “The structures of quadruplex mucleic acids and their drug complexes”. Curr. Opin. Struct Biol., 19 (3): 239-250.

[6] Bates, P.; Mergny, J. L.; Yang D. 2007. “Quartets in G-major. The First International Meeting on Quadruplex DNA”. EMBORep, England, 8: 1003-10.

[7] Dutta, K.; Fujimoto, T.; Inoue, M.; Miyoshi, D.; Sugimoto, N. 2010. “Development of new functional nanostructures consisting of both DNA duplex and quadruplex”. Chem. Commun., 46 (41): 7772-7774.

[8] Nakatsuka, K.; Shigeto, H.; Kuroda, A.; Funabashi, H. 2015 “A split G-quadruplex-based DNA nano-tweezers structure as a signal-transducing molecule for the homogeneous detection of specific nucleic acids”. Biosens Biolectron., 15 (74): 222-226.

[9] Mendez, M. A.; Szalai, V A. 2009. “Fluorescence of unmodified oligonucleotides: A tool to probe G-quadruplex DNA structure”. Biopolymers, 91 (10): 841-850.

[10] Miyoshi, D.; Karimata, H.; Wang, Z. M.; Koumoto K.; and Sugimoto N. 2007. “Artificial G-Wire Switches with 2, 2’-Bipyridine Units Responsive to Divalent Metal Ions”. J. Am. Chem. Soc., 129: 919-5925.

[11] Alberti, P.; Bourdoncle, A.; Sacca, B.; Lacroix, L. and Mergny, J. L. 2006. “DNA nanomachines and nanostructures involving quadruplexes”. Org. Biomol. Chem., 4: 3383-3391.

[12] Fottichia, I.; Amato, J.; Pagano, B.; Novellino, E.; Petraccone, L.; Giancola, C. 2015. “How are thermodynamically stable G-quadruplex-duplex hybrids?”. J. Therm. Anal. Calorim., 121: 1121-1127.

[13] Mendez, M. A and Szalai, V A. 2013. “Synapsable quadruplex mediated fibers”. Nanoscale Research Letters, 8: 210.

[14] Fahlman, R. P.; Dipankar, Sen. 1999. “Synapsable DNA Double Helices: Self-Selective Modules for Assembling DNA Superstructures”. J. Am. Chem. Soc., 121 (48): 11079-11085.

[15] Fahlman, R. P.; Sen, D. 2010. “Cation-regulated self-association of “synapsable” DNA duplexes”. J. Mol. Biol, 280 (2): 237-244.

[16] Shepard, W.; Cruse, W. B.; Fourme, R.; de la Fortelle, E. and Prange, T. 1998. “A zipper-like duplex in DNA: O the crystal structure of d (GCGAAAGCT) at 2.1 A resolution”. Structure, 6: 849-861.

[17] van Dijk, M.; Bonvin, A. 2009. “3D-DART: a DNA structure modelling server”. Nucl. Acids Res., 37: W235-W239.

[18] Sadhasivam, S. and Yun, K. 2010. “DNA self-assembly: prospectus and its future application”. Journal of Materials Science, 45 (10): 2543-2552.