Optical aptasensor for in situ detection and quantification of methylxanthines in Ilex guayusa

Contenido principal del artículo

Briggitte León
Andrea Montero
Diana Mollocana
Diana Calderón
María de Lourdes Torres

Resumen

El presente trabajo buscó el desarrollo de un sistema para detectar y cuantificar metilxantinas en Ilex guayusa. El sistema, denominado IPMA por sus siglas en inglés (Aptasensor de Metabolitos de Plantas In situ), se basa en un aptasensor óptico que integra un complejo de ADN y una porfirina (NMM IX). Se evaluó la capacidad de IPMA para detectar cantidades conocidas de teofilina y cafeína tanto en solución como infiltradas en hojas de guayusa. Los límites de detección determinados fueron: 0.25 mM para teofilina en solución, 0.1 mM para cafeína en solución, 130 mM para cafeína en hojas de I. guayusa. Estos resultados demuestran el potencial de IPMA para detectar y cuantificar metabolitos de interés directamente de muestras biológicas. El desarrollo de este tipo de herramienta ofrece una amplia gama de aplicaciones como la determinación in situ de estrés fisiológico en plantas y la caracterización de variedades vegetales con mayor contenido de compuestos de interés farmacéutico o alimentario.

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
León Intriago, B. A., Montero Oleas, A. C., Mollocana Yánez, D. S., Calderón Carvajal, D. J., & Torres Proaño, M. de L. (2022). Optical aptasensor for in situ detection and quantification of methylxanthines in Ilex guayusa . ACI Avances En Ciencias E Ingenierías, 14(1). https://doi.org/10.18272/aci.v14i1.2301
Sección
SECCIÓN B: CIENCIAS BIOLÓGICAS Y AMBIENTALES

Citas

1. Fiehn, O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Current Protocols on Molecular Biology, 114, 30.4.1-30.4.32. doi: http://doi.org/10.1002/0471142727.mb3004s114

2. Jorge, T. F., Mata, A., & António, C. (2016). Mass Spectrometry as a Quantitative Tool in Plant Metabolomics. Phil. Trans. R. Soc. A, 374. doi: http://dx.doi.org/10.1098/rsta.2015.0370

3. Lu, W., Su, X., Matthias, S., Klein, I., Lewis, A., Fiehn, O., & Rabinowitz, J. D. (2017). Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annual Review of Biochemistry, 86, 277–304. doi: http://doi.org10.1146/annurev-biochem-061516-044952

4. Liu, M., Khan, A., Wang, Z., Liu, Y., Yang, G., Deng, Y. & He, N. (2019). Aptasensors for Pesticide Detection. Biosensors and Bioelectronics, 130, 174-184. doi: http://doi.org/10.1016/j.bios.2019.01.006

5. Serna-Cock, L., & Perenguez-Verdugo, J. G. (2011). Biosensors Applications in Agri-Food Industry. Environmental Biosensors (May). doi: http://doi.org/10.5772/16744

6. Gouvea, C. (2011). Biosensors for Health Applications. Biosensors for Health, Environment and Biosecurity, 71-85. doi: http://doi.org/10.5772/17103

7. Romero, M. (2012). Estudio Químico y Electroquímico de Interacciones Entre Biomoléculas y Sus Aplicaciones En Biosensores. (Doctoral Thesis). Universidad Nacional de Córdoba, Argentina.

8. Malhotra, B. D., & Ali, M. A. (2018). Nanomaterials in Biosensors: Fundamentals and Applications. In Nanomaterials for Biosensors.Elsevier. doi: https://doi.org/10.1016/C2015-0-04697-4

9. Feng, C., Dai, S., & Lei, W. (2014). Optical Aptasensors for Quantitative Detection of Small Biomolecules: A Review. Biosensors and Bioelectronics, 59, 64-74. doi: http://doi.org/10.1016/j.bios.2014.03.014

10. Hernández, J., & Botero Hincapié, J. A. (2012). Aptámeros: Agentes Diagnósticos y Terapéuticos. Iatreia, 25(2), 159-168. ISSN 0121-0793. https://www.redalyc.org/articulo.oa?id=180523365008

11. Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors. Sensors (Basel), 12(2), 1181–1193. doi: https://doi.org/10.3390/s120201181

12. Sett, A., Das, S., Sharma, P., & Bora, U. (2012). Aptasensors in Health, Environment and Food Safety Monitoring. Open Journal of Applied Biosensor, 1(2). doi: https://doi.org/10.4236/ojab.2012.12002

13. Rana, J. S., Jindal, J., Beniwal, V., & Chhokar, V. (2010). Utility Biosensors for Applications in Agriculture – A Review. Journal of American Science, 6(9), 353-375. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.8344&rep=rep1&type=pdf

14. Kumar Sharma, R., & Kumar, I. (2018). Production of Secondary Metabolites in Plants under Abiotic Stress: An Overview. Significances of Bioengineering & Biosciences, 2(4). doi: https://doi.org/10.31031/sbb.2018.02.000545

15. Pagare, S., Manila, B., Tripathi, N., & Bansal, Y. K. (2015). Secondary Metabolites of Plants and Their Role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304. ISSN 2230-7303 (Online).

16. Andreeva, E. Y., Dmitrienko, S. G., Zolotov, Y. A. (2012) Methylxanthines: properties and determination in various objects Russian Chemical Reviews, 81(5), 397-414. doi: http://dx.doi.org/10.1070/RC2012v081n05ABEH004220

17. Evans, J., Richards, J. R., & Battisti, A. S. (2021) Caffeine. In: StatPearls. StatPearls Publishing.

18. Bucklin, M. H., & Groth, C. M. (2014). Theophylline. In Encyclopedia of Toxicology (Third Edition). Elsevier. ISBN: 978-0-12-386455-0

19. Ashihara, H., Kato, M., & Crozier, A. (2011). Distribution, biosynthesis and catabolism of methylxanthines in plants. Handb. Exp. Pharmacol., 200, 11-31. doi: http://doi.org/10.1007/978-3-642-13443-2_2

20. Kapp, R., Mendes, O., Roy, S., & McQuate, R. (2016). General and Genetic Toxicology of Guayusa Concentrate (Ilex guayusa). International Journal of Toxicology, 35(2), 222-242. doi: https://doi.org/10.1177/1091581815625594

21. Rätsch, C. (2005). The encyclopedia of psychoactive plants: Ethnopharmacology and its applications. Simon and Schuster.

22. Melo, V. (2014). Composición y análisis fitoquímico de la especie Ilex guayusa Loes. (Thesis). Universidad San Francisco de Quito, Ecuador.

23. Rankin, C. J., Fuller, E. N., Hamor, K. H., Gabarra, S. A., & Shields, T. P. (2006). A Simple Fluorescent Biosensor for Theophylline Based on Its RNA Aptamer. Nucleosides, Nucleotides and Nucleic Acids, 25(2), 1407-1424. doi: http://doi.org/10.1080/15257770600919084

24. Rivera, P. (2016). Diseño de un sistema de reporte, específico, in vitro de un metabolito de interés agroindustrial, teofilina, vía ensayos con aptámeros y fluorescencia (Thesis). Universidad San Francisco de Quito USFQ.

25. Yett, A., Yingqi, L., Beseiso, D., Miao, J., & Yatsunyk., L. A. (2019). N-Methyl Mesoporphyrin IX as a Highly Selective Light-up Probe for G-Quadruplex DNA. Journal of Porphyrins and Phthalocyanines, 23(11n12), 1195-1215. doi: https://doi.org/0.1142/S1088424619300179

26. Schack, J. A., & Waxler, S. H. (1949). An Ultraviolet Spectrophotometric Method for the Determination of Theophylline and Theobromine in Blood and Tissues. The Journal of Pharmacology and Experimental Therapeutics, 97(3), 283-91. https://pubmed.ncbi.nlm.nih.gov/15392550/

27. Londoño-Larrea, P., Zapata, S., Lara-Lopez, M., & Villamarin-Barriga, E. (2018). Preliminary study of caffeine extraction from Ilex guayusa L. leaves using supercritical carbon dioxide. Conference: MOL2NET 2018, International Conference on Multidisciplinary Sciences (4th edition). doi: https://doi.org/10.3390/mol2net-04-05297

28. Miller, J. N., & Miller, J. C. (2010). Statistics for analytical chemistry: 6th ed. Pearson Education Limited.

29. Schack, J. A., & Waxler, S. H. (1949). An Ultraviolet Spectrophotometric Method for the Determination of Theophylline and Theobromine in Blood and Tissues. The Journal of Pharmacology and Experimental Therapeutics, 97(3), 283-91. https://pubmed.ncbi.nlm.nih.gov/15392550/

30. Umar, M. I., Ji, D., Chan, C. Y., & Kwok, C. K. (2019). G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules, 24(13), 2416. doi: https://doi.org/10.3390/molecules24132416

31. Zhao, C., Wu, L., Ren, J., & Qu, X. (2011). A Label-Free Fluorescent Turn-on Enzymatic Amplification Assay for DNA Detection Using Ligand-Responsive G-Quadruplex Formation. Chemical Communications, 47(19), 5461–63. doi: https://doi.org/10.1039/c1cc11396h

32. Sabharwall, N., Savikhin, V., Turek-Herman, J., Nicoludis1, J., Szalai, V., & Yatsunyk, L. (2014). N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS Journal, 281(7), 1726–1737. doi: https://doi.org/10.1111/febs.12734

33. Hänsel-Hertsch, R., Di Antonio, M., & Balasubramanian, S. (2017). DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 18(5), 279-284. doi: https://doi.org/10.1038/nrm.2017.3

34. Zhao, D., Dong, X., Jiang, N., Zhang, D., & Liu, C. (2014). Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Research, 42(18), 11612–11621. doi: https://doi.org/10.1093/nar/gku833

35. Wang, J., Wang, Y., Liu, S., Wang, H., Zhang, X., Song, X., Yu, J., & Huang, J. (2019) Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Analyst, 144(10), 3389-3397. doi: https://doi.org/10.1039/C9AN00316A

36. Yuan, X., Chen, S., Li, S., Liu, Q., Kou, M., Xu, T., Luo, H., Huang, K., & Zhang, M. (2019). Enzymatic Reaction Modulation of G-Quadruplex Formation for the Sensitive Homogeneous Fluorescence Sensing of Cholinesterase and Organophosphate Pesticides. Analytical Methods, 11(7), 980–88. doi: https://doi.org/10.1039/c8ay01996g

37. Yao, Y., Liu, Y., Zhang, H., & Wang, X. (2019). A highly sensitive and low-background fluorescence assay for pesticides residues based on hybridization chain reaction amplification assisted by magnetic separation. Methods and Applications in Fluorescence, 7(3). https://iopscience.iop.org/article/10.1088/2050-6120/ab1e7a/meta

38. Kachalkin, A. K., Rumshtein, V., Minkova, A. P., Petrukhin, V. I., Suvorov, V. M., Horvath, D., &. Yutlandov, I. A. (1979). Temperature breaking of hydrogen bonds in water on negative-pion capture by hydrogen. Zh. Eksp. Teor. Fiz. 77, 26-30. http://jetp.ras.ru/cgi-bin/dn/e_050_01_0012.pdf

39. Ohtaki, H. (2003). Effects of Temperature and Pressure on Hydrogen Bonds in Water and in Formamide. Journal of Molecular Liquids, 103, 3-13. doi: https://doi.org/10.1016/S0167-7322(02)00124-1

40. Avagliano, D., Tkaczyk, S., Sánchez-Murcia, P. A., & González, L. (2020). Enhanced Rigidity Changes Ultraviolet Absorption: Effect of a Merocyanine Binder on G-Quadruplex Photophysics. The Journal of Physical Chemistry Letters, 11(23), 10212–10218. doi: https://doi.org/10.1021/acs.jpclett.0c03070

41. Banerjee, S., Kumar Verma, P., Kumar Mitra, R., Basu, G., & Kumar Pal, S. (2012). Probing the Interior of Self-Assembled Caffeine Dimer at Various Temperatures. Journal of Fluorescence Mar, 22(2), 753-69. doi: https://doi.org/10.1007/s10895-011-1011-3

42. Hofmann, L., & Palczewski, K. (2015). Advances in understanding the molecular basis of the first steps in color vision. Progress in retinal and eye research, 49, 46–66. doi: https://doi.org/10.1016/j.preteyeres.2015.07.004

43. Dresp, B. (2016). Colour perception across the species. HAL. https://hal.archives-ouvertes.fr/hal-01249428/document

44. Milne, B, Toker, Y., Rubio, A. & Brøndsted, S. N. (2015). Unraveling the Intrinsic Color of Chlorophyll. Angewandte Chemie. International Edition 54(7), 2170-2173. doi: https://doi.org/10.1002/anie.201410899

45. Prahl, S. (2017). Chlorophyll a. OMCL. https://omlc.org/spectra/PhotochemCAD/htm/122.html

46. Radice, M., & Vidari, G. (2007). Caracterización fitoquímica de la especie Ilex guayusa Loes y elaboración de un prototipo de fitofármaco de interés comercial. La Granja, 6(2), 3. doi: https://doi.org/10.17163/lgr.n6.2007.01

47. Rebolo López, S. (2007). Estudio de la composición polifenólica de vinos tintos gallegos con D.O.: Ribeiro, Valdeorras y Ribeira Sacra (Thesis). Universidad Santiago de Compostela, Lugo. https://minerva.usc.es/xmlui/bitstream/handle/10347/2353/9788497509435_content.pdf;sequence=1

48. Chepkoech Kilele, J., Chokkareddy, R., Rono, N., & Redhi, G. G. (2020). A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. Journal of the Taiwan Institute of Chemical Engineers, 111, 228-238. doi: https://doi.org/10.1016/j.jtice.2020.05.007

49. McKeague, M. & Derosa, M. C. (2012), Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012. doi: https://doi.org/10.1155/2012/748913

50. Komes, D., Horžić, D., Belščak, A., Kovačević Ganič, K., & Baljak, A. (2009). Determination of Caffeine Content in Tea and Maté Tea by Using Different Methods. Czech Journal of Food Sciences, 27, 213–16. doi: https://doi.org/10.17221/612-cjfs

51. Feng, S, Che, X., Que, L., Chen, C., & Wang, W. (2016). Rapid detection of theophylline using aptamer-based nanopore thin film sensor. IEEE, 1-3. doi: https://doi.org/10.1109/ICSENS.2016.7808959

52. Yemele Tajeu, K., Ymele, E., Zambou Jiokeng, S. L., & Kenfack Tonle, I. (2018). Electrochemical Sensor for Caffeine Based on a Glassy Carbon Electrode Modified with an Attapulgite/Nafion Film. Electroanalysis, 31(2), 350-356. doi: https://doi.org/10.1002/elan.201800621

53. Sarath Babu, V. R, Patra, S., Karanth, N. G., Kumar, M. A., Thakur, M. S. (2007). Development of a biosensor for caffeine. Anal Chim Acta, 582(2), 329-34. doi: https://doi.org/10.1016/j.aca.2006.09.017

54. Du, C., Ma, C., Gu, J., Li, L., & Chen, G. (2020). Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. Sensors, 20(3), 819. doi: https://doi.org/10.3390/s20030819

55. Csótó, M. (2015). Mobile Devices in Agriculture: Attracting New Audiences or Serving the Tech-Savvy. Journal of Agricultural Informatics, 6(3). doi: https://doi.org/10.17700/jai.2015.6.3.227

56. Griesche, C., Baeumner, A. J. (2020). Biosensors to support sustainable agriculture and food safety. TrAC Trends in Analytical Chemistry, 128,115906. doi: https://doi.org/10.1016/j.trac.2020.115906

57. El-Sharkawy, M. A. (2006). Utility of Basic Research in Plant/Crop Physiology in Relation to Crop Improvement: A Review and a Personal Account. Braz. J. Plant Physiol, 18(4), 419-446. doi: https://doi.org/10.1590/S1677-04202006000400001

58. Berbiye, I. Y. (2014). Raw Cocoa (Theobroma cacao L.) Quality Parameters - with special Reference to West Africa [Doctoral dissertation, University of Hamburg].

59. V. Jegadeeswari, & Arunkumar, K. (2019). Evaluating the processed beans of different cocoa (Theobroma cacao L.) accessions for quality parameters. Journal of Phytology, 11(1), 01–04. doi: https://doi.org/10.25081/jp.2019.v11.3827

60. Goławska, S., Sprawka, I., Lukasik, I., & Goławski, A. (2014). Are naringenin and quercetin useful chemicals in pest-management strategies. Journal of Pest Science, 87(1), 173–180. doi: https://doi.org/10.1007/s10340-013-0535-5

61. Sosa, M. E., Guerreiro, E., Giordano, O. S., & Tonn, C. E. (2000). Bioactividad de flavonoides sobre larvas de Tenebrio molitor (Coleoptera: Tenebrionidae). Rev. Soc. Entomol. Argent., 59(1–4), 179–184. https://www.biotaxa.org/RSEA/article/view/32428