Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN B: CIENCIAS BIOLÓGICAS Y AMBIENTALES

Vol. 14 Núm. 1 (2022)

Optical aptasensor for in situ detection and quantification of methylxanthines in Ilex guayusa

DOI
https://doi.org/10.18272/aci.v14i1.2301
Enviado
mayo 15, 2021
Publicado
2022-04-27

Resumen

El presente trabajo buscó el desarrollo de un sistema para detectar y cuantificar metilxantinas en Ilex guayusa. El sistema, denominado IPMA por sus siglas en inglés (Aptasensor de Metabolitos de Plantas In situ), se basa en un aptasensor óptico que integra un complejo de ADN y una porfirina (NMM IX). Se evaluó la capacidad de IPMA para detectar cantidades conocidas de teofilina y cafeína tanto en solución como infiltradas en hojas de guayusa. Los límites de detección determinados fueron: 0.25 mM para teofilina en solución, 0.1 mM para cafeína en solución, 130 mM para cafeína en hojas de I. guayusa. Estos resultados demuestran el potencial de IPMA para detectar y cuantificar metabolitos de interés directamente de muestras biológicas. El desarrollo de este tipo de herramienta ofrece una amplia gama de aplicaciones como la determinación in situ de estrés fisiológico en plantas y la caracterización de variedades vegetales con mayor contenido de compuestos de interés farmacéutico o alimentario.

viewed = 410 times

Citas

  1. Fiehn, O. (2016). Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Current Protocols on Molecular Biology, 114, 30.4.1-30.4.32. doi: http://doi.org/10.1002/0471142727.mb3004s114
  2. Jorge, T. F., Mata, A., & António, C. (2016). Mass Spectrometry as a Quantitative Tool in Plant Metabolomics. Phil. Trans. R. Soc. A, 374. doi: http://dx.doi.org/10.1098/rsta.2015.0370
  3. Lu, W., Su, X., Matthias, S., Klein, I., Lewis, A., Fiehn, O., & Rabinowitz, J. D. (2017). Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Annual Review of Biochemistry, 86, 277-304. doi: http://doi.org10.1146/annurev-biochem-061516-044952
  4. Liu, M., Khan, A., Wang, Z., Liu, Y., Yang, G., Deng, Y. & He, N. (2019). Aptasensors for Pesticide Detection. Biosensors and Bioelectronics, 130, 174-184. doi: http://doi.org/10.1016/j.bios.2019.01.006
  5. Serna-Cock, L., & Perenguez-Verdugo, J. G. (2011). Biosensors Applications in Agri-Food Industry. Environmental Biosensors (May). doi: http://doi.org/10.5772/16744
  6. Gouvea, C. (2011). Biosensors for Health Applications. Biosensors for Health, Environment and Biosecurity, 71-85. doi: http://doi.org/10.5772/17103
  7. Romero, M. (2012). Estudio Químico y Electroquímico de Interacciones Entre Biomoléculas y Sus Aplicaciones En Biosensores. (Doctoral Thesis). Universidad Nacional de Córdoba, Argentina.
  8. Malhotra, B. D., & Ali, M. A. (2018). Nanomaterials in Biosensors: Fundamentals and Applications. In Nanomaterials for Biosensors.Elsevier. doi: https://doi.org/10.1016/C2015-0-04697-4
  9. Feng, C., Dai, S., & Lei, W. (2014). Optical Aptasensors for Quantitative Detection of Small Biomolecules: A Review. Biosensors and Bioelectronics, 59, 64-74. doi: http://doi.org/10.1016/j.bios.2014.03.014
  10. Hernández, J., & Botero Hincapié, J. A. (2012). Aptámeros: Agentes Diagnósticos y Terapéuticos. Iatreia, 25(2), 159-168. ISSN 0121-0793. https://www.redalyc.org/articulo.oa?id=180523365008
  11. Hong, P., Li, W., & Li, J. (2012). Applications of Aptasensors in Clinical Diagnostics. Sensors. Sensors (Basel), 12(2), 1181-1193. doi: https://doi.org/10.3390/s120201181
  12. Sett, A., Das, S., Sharma, P., & Bora, U. (2012). Aptasensors in Health, Environment and Food Safety Monitoring. Open Journal of Applied Biosensor, 1(2). doi: https://doi.org/10.4236/ojab.2012.12002
  13. Rana, J. S., Jindal, J., Beniwal, V., & Chhokar, V. (2010). Utility Biosensors for Applications in Agriculture - A Review. Journal of American Science, 6(9), 353-375. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.469.8344&rep=rep1&type=pdf
  14. Kumar Sharma, R., & Kumar, I. (2018). Production of Secondary Metabolites in Plants under Abiotic Stress: An Overview. Significances of Bioengineering & Biosciences, 2(4). doi: https://doi.org/10.31031/sbb.2018.02.000545
  15. Pagare, S., Manila, B., Tripathi, N., & Bansal, Y. K. (2015). Secondary Metabolites of Plants and Their Role: Overview. Current Trends in Biotechnology and Pharmacy, 9(3), 293-304. ISSN 2230-7303 (Online).
  16. Andreeva, E. Y., Dmitrienko, S. G., Zolotov, Y. A. (2012) Methylxanthines: properties and determination in various objects Russian Chemical Reviews, 81(5), 397-414. doi: http://dx.doi.org/10.1070/RC2012v081n05ABEH004220
  17. Evans, J., Richards, J. R., & Battisti, A. S. (2021) Caffeine. In: StatPearls. StatPearls Publishing.
  18. Bucklin, M. H., & Groth, C. M. (2014). Theophylline. In Encyclopedia of Toxicology (Third Edition). Elsevier. ISBN: 978-0-12-386455-0
  19. Ashihara, H., Kato, M., & Crozier, A. (2011). Distribution, biosynthesis and catabolism of methylxanthines in plants. Handb. Exp. Pharmacol., 200, 11-31. doi: http://doi.org/10.1007/978-3-642-13443-2_2
  20. Kapp, R., Mendes, O., Roy, S., & McQuate, R. (2016). General and Genetic Toxicology of Guayusa Concentrate (Ilex guayusa). International Journal of Toxicology, 35(2), 222-242. doi: https://doi.org/10.1177/1091581815625594
  21. Ratsch, C. (2005). The encyclopedia ofpsychoactive plants: Ethnopharmacology and its applications. Simon and Schuster.
  22. Melo, V. (2014). Composición y análisis fitoquímico de la especie Ilex guayusa Loes. (Thesis). Universidad San Francisco de Quito, Ecuador.
  23. Rankin, C. J., Fuller, E. N., Hamor, K. H., Gabarra, S. A., & Shields, T. P. (2006). A Simple Fluorescent Biosensor for Theophylline Based on Its RNA Aptamer. Nucleosides, Nucleotides and Nucleic Acids, 25(2), 1407-1424. doi: http://doi.org/10.1080/15257770600919084
  24. Rivera, P. (2016). Diseño de un sistema de reporte, específico, in vitro de un metabolito de interés agroindustrial, teofilina, vía ensayos con aptámeros y fluorescencia (Thesis). Universidad San Francisco de Quito USFQ.
  25. Yett, A., Yingqi, L., Beseiso, D., Miao, J., & Yatsunyk., L. A. (2019). N-Methyl Mesoporphyrin IX as a Highly Selective Light-up Probe for G-Quadruplex DNA. Journal of Porphyrins and Phthalocyanines, 23(11n12), 1195-1215. doi: https://doi.org/0.1142/S1088424619300179
  26. Schack, J. A., & Waxler, S. H. (1949). An Ultraviolet Spectrophotometric Method for the Determination of Theophylline and Theobromine in Blood and Tissues. The Journal of Pharmacology and Experimental Therapeutics, 97(3), 283-91. https://pubmed.ncbi.nlm.nih.gov/15392550/
  27. Londoño-Larrea, P., Zapata, S., Lara-Lopez, M., & Villamarin-Barriga, E. (2018). Preliminary study of caffeine extraction from Ilex guayusa L. leaves using supercritical carbon dioxide. Conference: MOL2NET 2018, International Conference on Multidisciplinary Sciences (4th edition). doi: https://doi.org/10.3390/mol2net-04-05297
  28. Miller, J. N., & Miller, J. C. (2010). Statistics for analytical chemistry: 6th ed. Pearson Education Limited.
  29. Schack, J. A., & Waxler, S. H. (1949). An Ultraviolet Spectrophotometric Method for the Determination of Theophylline and Theobromine in Blood and Tissues. The Journal of Pharmacology and Experimental Therapeutics, 97(3), 283-91. https://pubmed.ncbi.nlm.nih.gov/15392550/
  30. Umar, M. I., Ji, D., Chan, C. Y., & Kwok, C. K. (2019). G-Quadruplex-Based Fluorescent Turn-On Ligands and Aptamers: From Development to Applications. Molecules, 24(13), 2416. doi: https://doi.org/10.3390/molecules24132416
  31. Zhao, C., Wu, L., Ren, J., & Qu, X. (2011). A Label-Free Fluorescent Turn-on Enzymatic Amplification Assay for DNA Detection Using Ligand-Responsive G-Quadruplex Formation. Chemical Communications, 47(19), 5461-63. doi: https://doi.org/10.1039/c1cc11396h
  32. Sabharwall, N., Savikhin, V., Turek-Herman, J., Nicoludis1, J., Szalai, V., & Yatsunyk, L. (2014). N-methylmesoporphyrin IX fluorescence as a reporter of strand orientation in guanine quadruplexes. FEBS Journal, 281(7), 1726-1737. doi: https://doi.org/10.1111/febs.12734
  33. Hansel-Hertsch, R., Di Antonio, M., & Balasubramanian, S. (2017). DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 18(5), 279-284. doi: https://doi.org/10.1038/nrm.2017.3
  34. Zhao, D., Dong, X., Jiang, N., Zhang, D., & Liu, C. (2014). Selective recognition of parallel and anti-parallel thrombin-binding aptamer G-quadruplexes by different fluorescent dyes. Nucleic Acids Research, 42(18), 11612-11621. doi: https://doi.org/10.1093/nar/gku833
  35. Wang, J., Wang, Y., Liu, S., Wang, H., Zhang, X., Song, X., Yu, J., & Huang, J. (2019) Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A. Analyst, 144(10), 3389-3397. doi: https://doi.org/10.1039/C9AN00316A
  36. Yuan, X., Chen, S., Li, S., Liu, Q., Kou, M., Xu, T., Luo, H., Huang, K., & Zhang, M. (2019). Enzymatic Reaction Modulation of G-Quadruplex Formation for the Sensitive Homogeneous Fluorescence Sensing of Cholinesterase and Organophosphate Pesticides. Analytical Methods, 11(7), 980-88. doi: https://doi.org/10.1039/c8ay01996g
  37. Yao, Y., Liu, Y., Zhang, H., & Wang, X. (2019). A highly sensitive and low-background fluorescence assay for pesticides residues based on hybridization chain reaction amplification assisted by magnetic separation. Methods and Applications in Fluorescence, 7(3). https://iopscience.iop.org/article/10.1088/2050-6120/ab1e7a/meta
  38. Kachalkin, A. K., Rumshtein, V., Minkova, A. P., Petrukhin, V. I., Suvorov, V. M., Horvath, D., &. Yutlandov, I. A. (1979). Temperature breaking of hydrogen bonds in water on negative-pion capture by hydrogen. Zh. Eksp. Teor. Fiz. 77, 26-30. http://jetp.ras.ru/cgi-bin/dn/e_050_01_0012.pdf
  39. Ohtaki, H. (2003). Effects of Temperature and Pressure on Hydrogen Bonds in Water and in Formamide. Journal of Molecular Liquids, 103, 3-13. doi: https://doi.org/10.1016/S0167-7322(02)00124-1
  40. Avagliano, D., Tkaczyk, S., Sánchez-Murcia, P. A., & González, L. (2020). Enhanced Rigidity Changes Ultraviolet Absorption: Effect of a Merocyanine Binder on G-Quadruplex Photophysics. The Journal of Physical Chemistry Letters, 11(23), 10212-10218. doi: https://doi.org/10.1021/acs.jpclett.0c03070
  41. Banerjee, S., Kumar Verma, P., Kumar Mitra, R., Basu, G., & Kumar Pal, S. (2012). Probing the Interior of Self-Assembled Caffeine Dimer at Various Temperatures. Journal of Fluorescence Mar, 22(2), 753-69. doi: https://doi.org/10.1007/s10895-011-1011-3
  42. Hofmann, L., & Palczewski, K. (2015). Advances in understanding the molecular basis of the first steps in color vision. Progress in retinal and eye research, 49, 46-66. doi: https://doi.org/10.1016/j.preteyeres.2015.07.004
  43. Dresp, B. (2016). Colour perception across the species. HAL. https://hal.archives-ouvertes.fr/hal-01249428/document
  44. Milne, B, Toker, Y., Rubio, A. & Br0ndsted, S. N. (2015). Unraveling the Intrinsic Color of Chlorophyll. Angewandte Chemie. International Edition 54(7), 2170-2173. doi: https://doi.org/10.1002/anie.201410899
  45. Prahl, S. (2017). Chlorophyll a. OMCL. https://omlc.org/spectra/PhotochemCAD/htm/122.html
  46. Radice, M., & Vidari, G. (2007). Caracterización fitoquímica de la especie Ilex guayusa Loes y elaboración de un prototipo de fitofármaco de interés comercial. La Granja, 6(2), 3. doi: https://doi.org/10.17163/lgr.n6.2007.01
  47. Rebolo López, S. (2007). Estudio de la composición polifenólica de vinos tintos gallegos con D.O.: Ribeiro, Valdeorras y Ribeira Sacra (Thesis). Universidad Santiago de Compostela, Lugo. https://minerva.usc.es/xmlui/bitstream/handle/10347/2353/9788497509435_content.pdf;sequence=1
  48. Chepkoech Kilele, J., Chokkareddy, R., Rono, N., & Redhi, G. G. (2020). A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. Journal of the Taiwan Institute of Chemical Engineers, 111, 228-238. doi: https://doi.org/10.1016/j.jtice.2020.05.007
  49. McKeague, M. & Derosa, M. C. (2012), Challenges and opportunities for small molecule aptamer development. J Nucleic Acids. 2012. doi: https://doi.org/10.1155/2012/748913
  50. Komes, D., Horzic, D., Belscak, A., Kovacevic Ganic, K., & Baljak, A. (2009). Determination of Caffeine Content in Tea and Maté Tea by Using Different Methods. Czech Journal of Food Sciences, 27, 213-16. doi: https://doi.org/10.17221/612-cjfs
  51. Feng, S, Che, X., Que, L., Chen, C., & Wang, W. (2016). Rapid detection of theophylline using aptamer-based nanopore thin film sensor. IEEE, 1-3. doi: https://doi.org/10.1109/ICSENS.2016.7808959
  52. Yemele Tajeu, K., Ymele, E., Zambou Jiokeng, S. L., & Kenfack Tonle, I. (2018). Electrochemical Sensor for Caffeine Based on a Glassy Carbon Electrode Modified with an Attapulgite/Nafion Film. Electroanalysis, 31(2), 350-356. doi: https://doi.org/10.1002/elan.201800621
  53. Sarath Babu, V. R, Patra, S., Karanth, N. G., Kumar, M. A., Thakur, M. S. (2007). Development of a biosensor for caffeine. Anal Chim Acta, 582(2), 329-34. doi: https://doi.org/10.1016/j.aca.2006.09.017
  54. Du, C., Ma, C., Gu, J., Li, L., & Chen, G. (2020). Fluorescence Sensing of Caffeine in Tea Beverages with 3,5-diaminobenzoic Acid. Sensors, 20(3), 819. doi: https://doi.org/10.3390/s20030819
  55. Csótó, M. (2015). Mobile Devices in Agriculture: Attracting New Audiences or Serving the Tech-Savvy. Journal of Agricultural Informatics, 6(3). doi: https://doi.org/10.17700/jai.2015.6.3.227
  56. Griesche, C., Baeumner, A. J. (2020). Biosensors to support sustainable agriculture and food safety. TrAC Trends in Analytical Chemistry, 128,115906. doi: https://doi.org/10.1016/j.trac.2020.115906
  57. El-Sharkawy, M. A. (2006). Utility of Basic Research in Plant/Crop Physiology in Relation to Crop Improvement: A Review and a Personal Account. Braz. J. Plant Physiol, 18(4), 419-446. doi: https://doi.org/10.1590/S1677-04202006000400001
  58. Berbiye, I. Y. (2014). Raw Cocoa (Theobroma cacao L.) Quality Parameters - with special Reference to West Africa [Doctoral dissertation, University of Hamburg].
  59. V. Jegadeeswari, & Arunkumar, K. (2019). Evaluating the processed beans of different cocoa (Theobroma cacao L.) accessions for quality parameters. Journal of Phytology, 11(1), 01-04. doi: https://doi.org/10.25081/jp.2019.v11.3827
  60. Gotawska, S., Sprawka, I., Lukasik, I., & Gotawski, A. (2014). Are naringenin and quercetin useful chemicals in pest-management strategies. Journal of Pest Science, 87(1), 173-180. doi: https://doi.org/10.1007/s10340-013-0535-5
  61. Sosa, M. E., Guerreiro, E., Giordano, O. S., & Tonn, C. E. (2000). Bioactividad de flavonoides sobre larvas de Tenebrio molitor (Coleoptera: Tenebrionidae). Rev. Soc. Entomol. Argent., 59(1-4), 179-184. https://www.biotaxa.org/RSEA/article/view/32428