Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Bionucleares 2020

Vol. 12 Núm. 3 (2020): Aplicaciones Nucleares (2021)

Contribución de la mutación inducida en cultivos a la seguridad alimentaria mundial

  • Fatma Sarsu
DOI
https://doi.org/10.18272/aci.v12i3.2031
Enviado
octubre 17, 2020
Publicado
2021-04-08

Resumen

El mejoramiento por mutaciones para la mejora de cultivos es una técnica utilizada desde
hace más de 70 años. La mutación inducida es una forma rápida de aumentar la tasa de
variación genética espontánea en plantas que contribuyen a la seguridad alimentaria
mundial. La variabilidad genética, creada a través de mutagénesis, es decir, física o
química, es un material de reproducción importante para el desarrollo de variedades
mejoradas y muchos estudios en el campo de la genómica funcional. Los cambios
genéticos hereditarios generados aleatoriamente se expresan en las plantas mutantes,
que se seleccionan por características nuevas y útiles, tales como alto rendimiento,
resistencia a enfermedades, tolerancia al estrés abiótico y mejor calidad nutricional. La técnica ayuda a mejorar la tolerancia de las especies de cultivos a condiciones climáticas
adversas, como temperaturas extremas, sequía, aparición de plagas y enfermedades.
Gracias al apoyo proporcionado por la División Mixta FAO / OIEA, se han generado
importantes efectos agronómicos y económicos en muchos países. La base de datos de
variedades mutantes (MDV, por sus siglas en inglés) de la FAO / OIEA (http://mvd.iaea.
org) demuestra la importancia de la inducción de mutaciones como una herramienta
eficaz en la mejora de cultivos. El uso extensivo de germoplasmas mutantes inducidos
en programas de mejora de cultivos dio como resultado la liberación de más de 3332
variedades mutantes de alrededor de 228 especies de cultivos (20 de julio de 2020).

viewed = 815 times

Citas

  1. Mba, C. (2013) Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture, Agronomy 2013, 3, 200-231, doi:10.3390/agronomy3010200, https://www.mdpi.com/journal/agronomy
  2. Beddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van, Bo, N., Nobre, C., A., Scholes, R., Sharma, R., & Wakhungu, J. ( 2011) Achieving Food Security in the Face of Climate Change: Summary for Policy Makers from the Commission on Sustainable Agriculture and Climate Change. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
  3. Sivasankar, S., Heng, L,H., & Kang, S. (2020) Agriculture: Improving Crop Production DOI: 10.1016/B978-0-12-409548-9.12323-1
  4. Spencer-Lopes, M,M., Forster, B,P., & Jankuloski, L. (2018) Manual on Mutation Breeding Third Edition, FAO ISBN 978-92-5-130526-3, http://www.fao.org/3/I9285EN/i9285en.pdf
  5. Sarsu, F., Ghanim, A.M.A., Das, P., Bahuguna, R.N., Kusolwa, P.M., Ashraf, M., Singla-Pareek, S.L., Pareek, A., Forster, B.P., & Ingelbrecht, I. (2018) Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice, Springer Book, open access- BN 978-3-319-77338-4, https://www.springer.com/gp/book/9783319773377
  6. Suprasanna, P., Mirajkar, S.J., & Jain, S.M. (2014) Induced mutagenesis for improving plant abiotic stress tolerance. Edited by N.B. Tomlekova, M.I. Kozgar and M.R. Wani "Mutagenesis exploring genetic diversity of crops" Wageningen Academic Publisher, eISBN: 978-90-8686-796-7;|ISBN: 978-90-8686-244-3, https://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-796-7_17
  7. FAO/IAEA Mutant Variety Database, https://mvd.iaea.org/ , 20 July 2020.
  8. Ahloowalia, B.S., Maluszynski, M., & Nichterlein, K. (2004) Global Impact of mutation-derived varieties. Eupphytica 135- 187-204.
  9. Kharckwal, M.C. & Shu, Q.Y. (2009) The role of Induced Mutations in World Food Security. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
  10. Luxiang, L., Xiong, H., Guo, H., Zhao, L., & Xie, Y. (2018) New Mutation Techniques Applied in Crop Improvement in China. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
  11. Souza, S.F., Reddy, K.S., Badigannavar, A.M., Manjay, J.G. & Jambhulkar, S.J. (2009) Mutation Breeding in Oilseeds and Grain Legumes in India: Accomplishments and Socio-Economic Impact. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
  12. Nakagawa, H. (2018) History of Mutation Breeding and Molecular Research Using Induced Mutations in Japan. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
  13. NIAB web page access 20 July 2020, http://www.niab.org.pk/mutation.htm
  14. Haq, M.A. (2009) Development of Mutant Varieties of Crop Plants at NIAB and the Impact on Agricultural Production in Pakistan Proceedings. In: Shu, Q. Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
  15. Pathirana, R. (2011) Plant Mutation Breeding in Agriculture, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (2011) 6, No. 032.
  16. Zakir, M. (2018) Mutation Breeding and its Application in Crop Improvement under Current Environmental Situations for Biotic and Abiotic Stresses, International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume 4, Issue 4, 2018, PP 1-10 ISSN; 2454-6224, http://dx.doi.org/10.20431/2454-6224.040400
  17. Yanev, A., (2006) Mutant Durum Wheat Varieties Developed in Bulgaria, Plant Mutation Reports, Vol. 1, No. 2, December.
  18. Scarascia- Mugnoza, G.T., Amato, A.D. & Avanzi, S. (1991) Mutation Breeding Programme for Durum Wheat (Tritucum turgidum spp dueum Desf), Proceedings of the Symposium on Plant Mutation Breeding for Crop Improvement, 18-22 June 1990, Vienna, Austria.
  19. Rutger, J.N. (2009) FAO/IAEA International Symposium on Induced Plant Mutations in the Genomics Era Proceedings. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
  20. Livore, A.B., Landau, A. & Prina, A.R. (2018) The Success of IMI Tolerant Rice Varieties in Latin America. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
  21. Schiocchet, M, A., Noldin, J, A., Marschalek, R., Wickert E., Eberhardt, D,S., Knoblauch, R., Scheuermann, K, K., Raimondihttps://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332015000400282&lng=en&tlng=en - aff2, J, V., & Andrade, A., (2015) . SCS121 CL: Rice cultivar resistant to herbicides of imidazolinone chemical group. Crop Breed. Appl. Biotechnol. vol.15 no.4 Viçosa Oct./Dec. 2015.https://doi.org/10.1590/198470332015v15n4c47
  22. Croughan, T., Utomo, H., Sanders, D., and Braverman, M. 1996. Herbicide-resistant rice offers potential solution to red rice problem. Louisiana agriculture 46, 24-26
  23. Merotto, A., Goulart, I.G., Nunes, A., Kalsing, A., Markus, C., Menezes, V. and Wander, A. 2006. Evolutionary and social consequences of introgression of non -transgenic herbicide resistance from rice to weedy rice in Brazil. Evolutionary appl. 9. 837-846.
  24. Singh, V., Zhou, S., Ganie, Z., Valverde, B., Avila, L., Marchesan, E., Merotto, A., Zorrilla, G., Burgos, N., and Norsworthy, J. 2017. Rice Production in the Americas. In "Rice Production Worldwide", pp. 137-168. Springer
  25. Gonzalez, M.C., Mukandama, J.P., Ali, M.M., Trujillo, D., Ferradaz, I. & Fuentes, J.L. (2008) Selection and Characterization of Tomato Mutants Tolerant to Low Water Supply. Plant Mutation Reports 2008; 2(1): 27-32.
  26. González-Cepero, M.C., Alonso, R.G., & Fernández, D.H. (2020) Girón 50, Nuevo Mutante de Tomate (Solanum lycopersicon L.) Tolerante a la Sequía y Altas Temperaturas. II Simposio Latinoamericano de Apliciones Nucleares en Agricultura, 5¬6 March 2020, Quito, Ecuador.
  27. Gomez-Pando, L., Eguiluz, A., Jimenez, J., Falconi, J., & Aguilar E.A. (2009) Barley (Hordeun vulgare) and Kiwicha (Amaranthus caudatus) Improvement by Mutation Induction in Peru. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
  28. Gómez-Pando, L., Deza-Montoya, D. & Ibañez-Tremolada, M. (2020) Mejoramiento Genético de la Tolerancia al Calor de Quinua (Chenopodium quinoa Willd) Mediante Inducción de Mutaciones. II Simposio Latinoamericano de Apliciones Nucleares en Agricultura, 5-6 March 2020, Quito, Ecuador.
  29. Horn, L.H., Shimelis, H.A., Sarsu, F., Mwadzingeni, L. & Laing, M.D. (2017) Genotype-by-environment Interaction for Grain Yield Among Novel Cowpea (Vigna unguiculata L.) Selections Derived by Gamma Irradiation. The Crop Journal, Elsevier, 8 December 2017, https://doi.org/10.1016/j.cj.2017.10.002
  30. FAO/IAEA Joint Division, Nuclear Techniques in Food and Agriculture Plant Breeding and Genetics Newsletter, https://www.iaea.org/publications/14740/plant-breeding-and-genetics-newsletter-no-45-july-2020
  31. Abdalla, E., Bakhit, O. & Elsheikh S. (2018) Groundnut Mutants with End-of-season Drought Tolerance for the Marginal Dry Lands of North Kordofan State, Sudan. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.