CONTRIBUTION OF INDUCED MUTATION IN CROPS TO GLOBAL FOOD SECURITY

Contenido principal del artículo

Fatma Sarsu

Resumen

Mutation breeding for crop improvement is a technique used for over 70 years. It is a fast way to increase the rate of spontaneous genetic variation in plants contributing to global food security. The genetic variability, created through mutagenesis i.e. physical or chemical, is an important breeding material for developing improved varieties and many studies in the field of functional genomics. The randomly generated heritable genetic changes are expressed in the mutant plants, which are selected for new and useful traits, such as high yielding, disease resistance, tolerance to abiotic stresses and improved nutritional quality. The technique helps to improve the tolerance of crop species to adverse climatic conditions, such as extremes of temperatures, drought, occurrence of pests and diseases. Through support provided by the Joint FAO/IAEA Division, significant agronomic and economic impact has been generated in many countries. The FAO/IAEA Mutant Variety Database (MVD) (http://mvd.iaea.org) demonstrates the significance of mutation induction as an efficient tool in crop improvement. The extensive use of induced mutant germplasms in crop improvement programmes resulted in releasing of more than 3,332 mutant varieties from around 228 crop species (20 July 2020).

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
Sarsu, F. (2021). CONTRIBUTION OF INDUCED MUTATION IN CROPS TO GLOBAL FOOD SECURITY. ACI Avances En Ciencias E Ingenierías, 12(3), 10. https://doi.org/10.18272/aci.v12i3.2031
Sección
Bionucleares 2020

Citas

1. Mba, C. (2013) Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture, Agronomy 2013, 3, 200–231, doi:10.3390/agronomy3010200, https://www.mdpi.com/journal/agronomy
2. Beddington, J., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Van, Bo, N., Nobre, C., A., Scholes, R., Sharma, R., & Wakhungu, J. ( 2011) Achieving Food Security in the Face of Climate Change: Summary for Policy Makers from the Commission on Sustainable Agriculture and Climate Change. Copenhagen, Denmark: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).
3. Sivasankar, S., Heng, L,H., & Kang, S. (2020) Agriculture: Improving Crop Production DOI: 10.1016/B978-0-12-409548-9.12323-1
4. Spencer-Lopes, M,M., Forster, B,P., & Jankuloski, L. (2018) Manual on Mutation Breeding Third Edition, FAO ISBN 978-92-5-130526-3, http://www.fao.org/3/I9285EN/i9285en.pdf
5. Sarsu, F., Ghanim, A.M.A., Das, P., Bahuguna, R.N., Kusolwa, P.M., Ashraf, M., Singla-Pareek, S.L., Pareek, A., Forster, B.P., & Ingelbrecht, I. (2018) Pre-Field Screening Protocols for Heat-Tolerant Mutants in Rice, Springer Book, open access- BN 978-3-319-77338-4, https://www.springer.com/gp/book/9783319773377
6. Suprasanna, P., Mirajkar, S.J., & Jain, S.M. (2014) Induced mutagenesis for improving plant abiotic stress tolerance. Edited by N.B. Tomlekova, M.I. Kozgar and M.R. Wani “Mutagenesis exploring genetic diversity of crops” Wageningen Academic Publisher, eISBN: 978-90-8686-796-7;|ISBN: 978-90-8686-244-3, https://www.wageningenacademic.com/doi/abs/10.3920/978-90-8686-796-7_17
7. FAO/IAEA Mutant Variety Database, https://mvd.iaea.org/ , 20 July 2020.
8. Ahloowalia, B.S., Maluszynski, M., & Nichterlein, K. (2004) Global Impact of mutation-derived varieties. Eupphytica 135- 187-204.
9. Kharckwal, M.C. & Shu, Q.Y. (2009) The role of Induced Mutations in World Food Security. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
10. Luxiang, L., Xiong, H., Guo, H., Zhao, L., & Xie, Y. (2018) New Mutation Techniques Applied in Crop Improvement in China. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
11. Souza, S.F., Reddy, K.S., Badigannavar, A.M., Manjay, J.G. & Jambhulkar, S.J. (2009) Mutation Breeding in Oilseeds and Grain Legumes in India: Accomplishments and Socio-Economic Impact. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
12. Nakagawa, H. (2018) History of Mutation Breeding and Molecular Research Using Induced Mutations in Japan. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
13. NIAB web page access 20 July 2020, http://www.niab.org.pk/mutation.htm
14. Haq, M.A. (2009) Development of Mutant Varieties of Crop Plants at NIAB and the Impact on Agricultural Production in Pakistan Proceedings. In: Shu, Q. Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
15. Pathirana, R. (2011) Plant Mutation Breeding in Agriculture, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (2011) 6, No. 032.
16. Zakir, M. (2018) Mutation Breeding and its Application in Crop Improvement under Current Environmental Situations for Biotic and Abiotic Stresses, International Journal of Research Studies in Agricultural Sciences (IJRSAS) Volume 4, Issue 4, 2018, PP 1-10 ISSN; 2454–6224, http://dx.doi.org/10.20431/2454-6224.040400
17. Yanev, A., (2006) Mutant Durum Wheat Varieties Developed in Bulgaria, Plant Mutation Reports, Vol. 1, No. 2, December.
18. Scarascia- Mugnoza, G.T., Amato, A.D. & Avanzi, S. (1991) Mutation Breeding Programme for Durum Wheat (Tritucum turgidum spp dueum Desf), Proceedings of the Symposium on Plant Mutation Breeding for Crop Improvement, 18–22 June 1990, Vienna, Austria.
19. Rutger, J.N. (2009) FAO/IAEA International Symposium on Induced Plant Mutations in the Genomics Era Proceedings. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
20. Livore, A.B., Landau, A. & Prina, A.R. (2018) The Success of IMI Tolerant Rice Varieties in Latin America. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27-31 August 2018, Vienna, Austria.
21. Schiocchet, M, A., Noldin, J, A., Marschalek, R., Wickert E., Eberhardt, D,S., Knoblauch, R., Scheuermann, K, K., Raimondihttps://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332015000400282&lng=en&tlng=en - aff2, J, V., & Andrade, A., (2015) . SCS121 CL: Rice cultivar resistant to herbicides of imidazolinone chemical group. Crop Breed. Appl. Biotechnol. vol.15 no.4 Viçosa Oct./Dec. 2015.https://doi.org/10.1590/198470332015v15n4c47
22. Croughan, T., Utomo, H., Sanders, D., and Braverman, M. 1996. Herbicide-resistant rice offers potential solution to red rice problem. Louisiana agriculture 46, 24-26
23. Merotto, A., Goulart, I.G., Nunes, A., Kalsing, A., Markus, C., Menezes, V. and Wander, A. 2006. Evolutionary and social consequences of introgression of non -transgenic herbicide resistance from rice to weedy rice in Brazil. Evolutionary appl. 9. 837-846.
24. Singh, V., Zhou, S., Ganie, Z., Valverde, B., Avila, L., Marchesan, E., Merotto, A., Zorrilla, G., Burgos, N., and Norsworthy, J. 2017. Rice Production in the Americas. In "Rice Production Worldwide", pp. 137-168. Springer
25. Gonzalez, M.C., Mukandama, J.P., Ali, M.M., Trujillo, D., Ferradaz, I. & Fuentes, J.L. (2008) Selection and Characterization of Tomato Mutants Tolerant to Low Water Supply. Plant Mutation Reports 2008; 2(1): 27–32.
26. González-Cepero, M.C., Alonso, R.G., & Fernández, D.H. (2020) Girón 50, Nuevo Mutante de Tomate (Solanum lycopersicon L.) Tolerante a la Sequía y Altas Temperaturas. II Simposio Latinoamericano de Apliciones Nucleares en Agricultura, 5¬6 March 2020, Quito, Ecuador.
27. Gomez-Pando, L., Eguiluz, A., Jimenez, J., Falconi, J., & Aguilar E.A. (2009) Barley (Hordeun vulgare) and Kiwicha (Amaranthus caudatus) Improvement by Mutation Induction in Peru. In: Shu, Q.Y. editor Induced Plant Mutations in the Genomics Era, http://www.fao.org/3/i0956e/i0956e00.htm
28. Gómez-Pando, L., Deza-Montoya, D. & Ibañez-Tremolada, M. (2020) Mejoramiento Genético de la Tolerancia al Calor de Quinua (Chenopodium quinoa Willd) Mediante Inducción de Mutaciones. II Simposio Latinoamericano de Apliciones Nucleares en Agricultura, 5–6 March 2020, Quito, Ecuador.
29. Horn, L.H., Shimelis, H.A., Sarsu, F., Mwadzingeni, L. & Laing, M.D. (2017) Genotype-by-environment Interaction for Grain Yield Among Novel Cowpea (Vigna unguiculata L.) Selections Derived by Gamma Irradiation. The Crop Journal, Elsevier, 8 December 2017, https://doi.org/10.1016/j.cj.2017.10.002
30. FAO/IAEA Joint Division, Nuclear Techniques in Food and Agriculture Plant Breeding and Genetics Newsletter, https://www.iaea.org/publications/14740/plant-breeding-and-genetics-newsletter-no-45-july-2020
31. Abdalla, E., Bakhit, O. & Elsheikh S. (2018) Groundnut Mutants with End-of-season Drought Tolerance for the Marginal Dry Lands of North Kordofan State, Sudan. FAO/IAEA International Symposium on Plant Mutation Breeding and Biotechnology, 27–31 August 2018, Vienna, Austria.