Induced mutations in crop plants at Instituto de Genética "Ewald A. Favret": mutants of scientific and/or agronomic interest Induced mutations in crop plants at Instituto de Genética "Ewald A. Favret"

Contenido principal del artículo

Alejandra Landau


The use of induced mutations techniques in crop plants at Instituto de Genética “Ewald A. Favret” (IGEAF) INTA, started in 1949, with the pioneer work of Ewald Favret, who studied the effects of physical and chemical mutagens on barley (Hordeum vulgare) and wheat (Triticum aestivum). IGEAF contributed with several novel results about the effects of important chemical mutagens such as ethyl methane sulfonate (EMS) and sodium azide, and their interactions with X-rays, on barley and wheat. During several decades, a good deal of the research was directed to study the relationship between the different effects of mutagenic treatments on the M1 and subsequent generations, and its implications for efficient selection of induced mutants. Many original barley and wheat mutants have been isolated at IGEAF, which early on contributed to elucidate the genetic basis of characters like the hormonal control of growth, the grain protein content and diseases reactions. Besides, several other novel mutants were isolated and characterized including genetically unstable mutants, which are able to originate new heritable variability. One of these mutants is the barley chloroplast mutator (cpm) from which some interesting mutants have been isolated. Moreover, a high throughput strategy for the screening of plastome mutants originated by the cpm was developed (cpTILLING) that allowed the detection of 61 different mutational events, showing the cpm as an extraordinary source of plastome mutants. On the other hand, protocols for direct selection of wheat mutants tolerant to drought were developed and promising advanced lines are at present investigated. Furthermore, a mutant allele of the AHAS (acetolactate synthase) gene in wheat conferring imidazolinones herbicides tolerance, was isolated. The incorporation of this allele to other genetic backgrounds showed increased levels of tolerance, which in one family were observed in association with increased Fusarium tolerance. In addition to the work done in barley and wheat, interactions with several breeding programs in other crops were carried out. Finally, some commercial achievements of INTA obtained by using induced mutations techniques are briefly described; being the most important the case of the INTA rice (Oryza sativa) breeding program for developing imidazolinones tolerant commercial varieties that in recent years covered 70% of the irrigated rice area in Latin America.


La descarga de datos todavía no está disponible.


Cargando métricas ...

Detalles del artículo

Cómo citar
Landau, A. (2021). Induced mutations in crop plants at Instituto de Genética "Ewald A. Favret": mutants of scientific and/or agronomic interest: Induced mutations in crop plants at Instituto de Genética "Ewald A. Favret". ACI Avances En Ciencias E Ingenierías, 12(3), 14.
Bionucleares 2020


[1] Favret, E. A. (1960). Somatic mutations of four genes for albinism in barley induced by X-rays and ethyl methane-sulphonate. Hereditas, 46 (3-4), 622–634.
[2] Favret, E. A. (1960). Spontaneous and induced mutations of barley for the reaction to mildew. Hereditas, 46, 20–28.
[3] Favret, E. A. (1964). Genetic effects of single and combined treatment of ionizing radiations and ethyl methane-sulphonate on barley seeds. In: Barley Genetics I. Proceedings of the First International Barley Genetics Symposium,Wageningen. Holland. Proc. Wagenungen PUDOC p. 68-81.
[4] Prina, A. R. & Favret, E. A. (1983). Parabolic effect in sodium azide mutagenesis in barley. Hereditas, 98, 89–94.
[5] Prina, A. R. & Favret, E. A. (1983). Influence of potassium cyanide on the azide mutagenesis in barley. Hereditas, 98, 253–258.
[6] Prina, A. R., Hagberg, A. & Favret, E. A. (1986). Inheritable sterility induced by X-rays and sodium azide in barley. Genética Agraria, 40, 309–320.
[7] Prina, A. R. (1989). Consideraciones sobre la aplicación eficiente de la mutagénesis inducida en fitomejoramiento. Mendeliana, 9, 3–48.
[8] Prina, A. R., Landau, A. M., Pacheco, M. G., & Hopp, H. E. (2010). Mutagénesis, TILLING y EcoTILLING. En G. Levitus, V. Echenique, C. Rubinstein, E. Hopp y L. Mroginski (Eds), Biotecnología y Mejoramiento Vegetal II. Argenbio-INTA.
[9] Prina, A. R., Landau, A. M., & Pacheco, M. G. (2012). Chimeras and Mutant Gene Transmisión. In: Q.S. Shu, B. P. Forster & H. Nakagawa (Eds), Plant Mutation Breeding and Biotechnology. FAO/IAEA, International Atomic Energy Agency, Vienna, Austria (ISBN 978-1-78064-085-3) pp 181-189.
[10] Martínez, A. H., & Favret, E. A. (1990). Anthocyanin synthesis and lengthening in the first leaf of barley isogenic lines. Plant Science, 71(1), 35–43.
[11] Favret, E. A., Manghers, L., Solari, R., Avila, A., Monesiglio, J. C. (1970). Gene control of protein production in cereal seeds. Conference paper: Improving plant protein by nuclear techniques. Proceedings of a symposium, Vienna. Jointly organized by the IAEA and FAO. pp.87–97.
[12] Favret, E. A. (1965). Induced mutations in breeding for disease resistance. The use of induced mutations in plant breeding. Report of the meeting organised by the FAO/IAEA, 25th may-1st june 1964. Roma. Pergamon. Oxford. GB pp. 521–536.
[13] Favret, E. A., Saione, H., Franzone, P. M., Arias, M. C., Solari, R. M. & Lind, V. (1983). Disease reaction mutagenesis in barley and wheat. In: Induced Mutations for Disease resistance in Crop Plants. STI/PUB/633, IAEA, Vienna pp. 53–63.
[14] Prina, A. R. (1995). A developmental barley mutant with temperature conditioned expression and vegetative and sexual reproduction. In: Induced Mutations and Molecular Techniques for Crop Improvement, Proceedings of a symposium, Vienna, 19-23 June 1995, jointly organized by IAEA and FAO, pp 633-634
[15] Martínez, A. E., Franzone, P. M., Aguinaga, A., Polenta, G., Murray, R. & Prina, A. R. (2004). A nuclear gene controlling seminal root growth response to hydroponic cultivation in barley. Environmental and Experimental Botany, 51, 133–144.
[16] Myhill, R. R. & Konzak, C.F. (1967). A new technique for culturing and measuring barley seedlings. Crop Science, 7, 275–277.
[17] Martínez, A.E., Landau, A., García, P. T., Polenta, G., Arias, M. C., Murray, R., Pensel, N. & Prina, A. R. (2005). Two mutants affecting adaptative responses to abiotic stresses in barley seedlings. Czech Journal of Genetics and Plant Breeding, 41(1), 1–10.
[18] Prina, A. R. (1992). A mutator nuclear gene inducing a wide spectrum of cytoplasmically inherited chlorophyll deficiences in barley. Theoretical and Applied Genetics, 85, 245–251.
[19] Prina, A. R. (1996). Mutator-induced cytoplasmic mutants in barley: genetic evidence of activation of a putative chloroplast transposon. Journal of Heredity, 87, 385–389.
[20] Prina, A. R., Arias, M. C., Lainez, V., Landau, A. & Maldonado, S. (2003). A cytoplasmically inherited mutant controlling early chloroplast development in barley seedlings. Theoretical and Applied Genetics, 107, 1410–1418.
[21] Landau, A., Díaz Paleo, A., Civitillo, R., Jaureguialzo M., & Prina, A. R. (2007). Two infA gene mutations independently originated from a mutator genotype in barley. Journal of Heredity, 98(3), 272–276.
[22] Landau, A. M., Pacheco, M. G., & Prina, A. R. (2011). A second infA plastid gene point mutation shows a compensatory effect on the expression of the cytoplasmic line 2 (CL2) syndrome in barley. Journal of Heredity, 102(5), 633-639.
[23] Landau, A. M., Lokstein, H., Scheller, H. V., Lainez, V., Maldonado, S., & Prina, A.R. (2009). A cytoplasmically inherited barley mutant is defective in photosystem I assembly due to a temperature-sensitive defect in ycf3 splicing. Plant Physiology, 151, 1802–1811.
[24] Ríos, R.D., Saione, H., Robredo, C., Acevedo, A., Colombo, N., & Prina, A.R. (2003). Isolation and molecular characterization of atrazine tolerant barley mutants. Theoretical and Applied Genetics, 106, 696–702.
[25] McCallum, C.M., Comai, L., Greene, E.A., & Henikoff, S. (2000). Targeting Induced Local Lesions In Genomes (TILLING) for plant functional genomics. Plant Physiology, 123, 439–442.
[26] Colbert, T., Till, B.J., Tompa, R., Reynolds, S., Steine, M.N., Yeung, A.T., McCallum, C.M., Greene, E.A., Comai, L., & Henikoff, S. (2001). High throughtput screening for induced point mutations. Plant Physiology, 126, 480-484.
[27] Landau, A., Lencina, F., Pacheco, M. G., & Prina, A. R. (2016). Plastome mutations and recombination events in barley chloroplast mutator seedlings. Journal of Heredity, 107(3), 266–273.
[28] Lencina, F., Landau, A. M., Petterson, M. E., Pacheco, M. G., Kobayashi, K., & Prina, A. R. (2019). The rpl23 gene and pseudogene are hotspots of illegitimate recombination in barley chloroplast mutator seedlings. Scientific Reports, 9:9960.
[29] Prina, A. R., Pacheco, M. G., & Landau, A. M. (2012) Mutation Induction in Cytoplasmic Genomes. In: Q.S. Shu, B. P. Forster & H. Nakagawa (Eds), Plant Mutation Breeding and Biotechnology. FAO/IAEA, International Atomic Energy Agency, Vienna, Austria (ISBN 978-1-78064-085-3) pp 203-208.
[30] Tcach, M. A., Díaz, D. G., Martínez, A. E., Brizuela, V. E., Acuña, C., & Prina, A. R. (2018). Caracterización de una nueva fuente de tolerancia a imidazolinonas en algodón Gossypium hirsutum obtenida mediante inducción de mutaciones. 1º Congreso Internacional de Algodón, 27/10/17, Presidencia Roque Sáenz Peña, Chaco, Argentina.
[31] Diaz, D. G., Tcach, M., Peterlin, O., Mondino, M., & Prina, A. R. (2011). Selección de líneas de algodón con fructificación agrupada en progenies obtenidas a partir de mutaciones inducidas en Guazuncho 2 INTA. En: Ciencia y Tecnología de los Cultivos Industriales (ISSN 1853 -7677), Año 1 Nº 2 :124-127.
[32] Kharkwal, M. C., & Shu, Q. Y. (2009). The Role of Induced Mutations in World Food Security. In: Q.Y. Shu (Ed), Induced Plant Mutations in the Genomics Era. FAO/IAEA, Rome, Italy. (ISBN 978-92-5-106324-8) pp 33-38.
[33] Livore, A. B., Prina, A. R., Singh, B. K., Ascenzi, R., & Whitt, S. R. (2010). Herbicide-resistant rice plants, polynucleotides encoding herbicide-resistant acetohydroxyacid synthase large subunit proteins, and methods of use. United States Patent application publication.
[34] Livore, A. B., Prina, A. R., Birk, I., & Singh, B. (2011). Rice plants having increased tolerance to imidazolinone herbicides. European patent application.

DB Error: Unknown column 'Array' in 'where clause'