XML (English)
37
Resumen
La biomasa residual es una materia prima clave para la producción de calor y electricidad, biocombustibles y productos químicos. Con base a los resultados reportados en la literatura, Ecuador, al ser una economía basada en la agricultura, tiene el potencial de satisfacer sus demandas energéticas cumpliendo con las regulaciones ambientales, mediante la conversión de biomasa residual autogenerada. En las últimas décadas, se han modelado y estudiado ampliamente métodos biológicos, químicos y termoquímicos convencionales a escala de laboratorio para la producción de biogás, bioetanol y otros combustibles sólidos y líquidos. Los cuales pueden convertirse en la piedra base para el desarrollo de aplicaciones a mayor escala. Además, estudios recientes, han mostrado también el desarrollo de nuevos procesos para la conversión de residuos de biomasa ecuatoriana en productos de valor agregado, tales como materiales porosos para tratamiento biomédico y de aguas residuales, producción de hidrógeno, entre otros. Esto, en general, proporciona un ciclo de revalorización de las corrientes de residuos actuales, reduciendo el problema del tratamiento y eliminación de residuos, con el objetivo de introducir productos para el desarrollo de una bioeconomía local sostenible.
viewed = 591 times
Citas
Acosta, N., De Vrieze, J., Sandoval, V., Sinche, D., Wierinck, I., & Rabaey, K. (2018). Cocoa residues as viable biomass for renewable energy production through anaerobic digestion. Bioresource Technology, 265, 568-572. doi:https://doi.org/10.1016/j.biortech.2018.05.100
Aguilar, M. C., Wang, Y. D., Roskilly, T., Pathare, P. B., & Lamidi, R. O. (2017). Biogas from anaerobic co-digestion of food waste and primary sludge for cogeneration of power and heat. Energy Procedia, 142, 70-76. doi:https://doi.org/10.1016/j.egypro.2017.12.012
Almeida Streitwieser, D. (2017). Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresource Technology, 241, 985-992. doi:https://doi.org/10.1016/j.biortech.2017.06.006
Almeida Streitwieser, D., & Cadena Cabezas, I. (2018). - Preliminary Study of Biomethane Production of Organic Waste based on their Content of Sugar, Starch, Lipid, Protein and Fibre. Chemical Engineering Transactions, 65, 661-666. doi:10.3303/CET1865111
ARCONEL. (2018). Agencia de Regulación y Control de Electricidad: Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano. Retrieved from https://www.regulacionelectrica.gob.ec/boletines-estadisticos/
Banchon, C., Castillo, A., & Posligua, P. (2017). CHEMICAL INTERACTIONS TO CLEANUP HIGHLY POLLUTED AUTOMOBILE SERVICE STATION WASTEWATER BY BIOADSORPTION-COAGULATION-FLOCCULATION. Journal of Ecological Engineering, 18(1), 1-10. doi:10.12911/22998993/66252
Barragán-Escandón, A., Olmedo Ruiz, J. M., Curillo Tigre, J. D., & Zalamea-León, E. F. (2020). Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability, 12(7). doi:10.3390/su12072669
Barreto, R. A. (2018). Fossil fuels, alternative energy and economic growth. Economic Modelling, 75, 196-220. doi:https://doi.org/10.1016/j.econmod.2018.06.019
Barzallo-Bravo, L. A., Carrera-Villacrés, D., Vargas-Verdesoto, R. E., Ponce-Loaiza, L. K., Correoso, M., & Gavilanes-Quishpi, Á. P. (2019). Bio-digestion and post-treatment of effluents by bio-fermentation, an opportunity for energy uses and generation of organic fertilizers from bovine manure. International Journal of Recycling of Organic Waste in Agriculture, 8(4), 431-438. doi:10.1007/s40093-019-0275-5
Belenky, A. S., Farazmand, A., & Vasin, A. (2019). The Management of Large Scale Energy Projects: Opportunities and Challenges. International Journal of Public Administration, 42(15-16), 1251-1255. doi:10.1080/01900692.2019.1675929
Bonilla, H. R., Balón, C. M., Moreno, A. P., & Pesantez, F. R. J. I. d. (2019). Estudio cinético de la producción de bioetanol a partir de residuos agroindustriales de la cáscara de banano maduro. 22(1), 187-202.
Bridgwater, A. V. (2012). Upgrading biomass fast pyrolysis liquids. Environmental Progress & Sustainable Energy, 31(2), 261-268. doi:10.1002/ep.11635
Buenaño, B., Vera, E., & Aldás, M. B. (2019). Study of coagulating/flocculating characteristics of organic polymers extracted from biowaste for water treatment. Ingeniería e Investigación, 39, 24-35.
BuÅ¡ić, A., MarÄ‘etko, N., Kundas, S., Morzak, G., Belskaya, H., IvanÄić Å antek, M., . . . Å antek, B. (2018). Bioethanol Production from Renewable Raw Materials and Its Separation and Purification: A Review. Food technology and biotechnology, 56(3), 289-311. doi:10.17113/ftb.56.03.18.5546
Campaña-Pérez, J. F., Portero Barahona, P., Martín-Ramos, P., & Carvajal Barriga, E. J. (2019). Ecuadorian yeast species as microbial particles for Cr(VI) biosorption. Environmental Science and Pollution Research, 26(27), 28162-28172. doi:10.1007/s11356-019-06035-8
Carvajal Barriga, E. J. (2012). Second Generation Ethanol from Residual Biomass: Research and Perspectives in Ecuador.
Castelo, P., Peñafiel, R. D., & de Lourdes Ochoa-Herrera, V. J. A. A. e. C. e. I. (2014). Digestión anaeróbica de desechos de frutas y hortalizas en reactores semicontinuos de un mercado municipal en Tumbaco, Ecuador. 6(2).
Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044-4064. doi:https://doi.org/10.1016/j.biortech.2007.01.057
Choi, M. K., Park, H. C., & Choi, H. S. (2018). Comprehensive evaluation of various pyrolysis reaction mechanisms for pyrolysis process simulation. Chemical Engineering and Processing - Process Intensification, 130, 19-35. doi:https://doi.org/10.1016/j.cep.2018.05.011
Cornejo, C., & Wilkie, A. C. (2010). Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy for Sustainable Development, 14(4), 256-266. doi:https://doi.org/10.1016/j.esd.2010.09.008
Costa, S., Rugiero, I., Larenas Uria, C., Pedrini, P., & Tamburini, E. (2018). Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production. Biomolecules, 8(4). doi:10.3390/biom8040141
Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785
Davis, M. J. M., Polit, D. J., & Lamour, M. (2016). Social Urban Metabolism Strategies (SUMS) for Cities. Procedia Environmental Sciences, 34, 309-327. doi:https://doi.org/10.1016/j.proenv.2016.04.028
Diéguez-Santana, K., González, E. C., Pérez-Martínez, A., & Herrera-Robledo, M. (2018). The Pig Manure Anaerobic Digestion. A tubular biodigester characterization in the Ecuadorian Amazon. Paper presented at the Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition.
Edelmann, W., Schleiss, K., & Joss, A. (2000). Ecological, energetic and economic comparison of anaerobic digestion with different competing technologies to treat biogenic wastes. Water Science and Technology, 41(3), 263-273. doi:10.2166/wst.2000.0080
Fasihi, M., Bogdanov, D., & Breyer, C. (2017). Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe"”Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World. Sustainability, 9(2). doi:10.3390/su9020306
Gaibor-Chávez, J., Niño-Ruiz, Z., Velázquez-Martí, B., & Lucio-Quintana, A. (2019). Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure. Waste and Biomass Valorization, 10(8), 2129-2137. doi:10.1007/s12649-018-0228-7
Gallardo-Rodríguez, J. J., Rios-Rivera, A. C., & Von Bennevitz, M. R. (2019). Living biomass supported on a natural-fiber biofilter for lead removal. Journal of Environmental Management, 231, 825-832. doi:https://doi.org/10.1016/j.jenvman.2018.11.004
Gallo-Cordova, A., Silva-Gordillo, M. d. M., Muñoz, G. A., Arboleda-Faini, X., & Almeida Streitwieser, D. (2017). Comparison of the adsorption capacity of organic compounds present in produced water with commercially obtained walnut shell and residual biomass. Journal of Environmental Chemical Engineering, 5(4), 4041-4050. doi:https://doi.org/10.1016/j.jece.2017.07.052
Gamborg, C., Millar, K., Shortall, O., & Sandøe, P. (2012). Bioenergy and Land Use: Framing the Ethical Debate. Journal of Agricultural and Environmental Ethics, 25(6), 909-925. doi:10.1007/s10806-011-9351-1
Garcia M, J. C., Machimura, T., & Matsui, T. (2012). Optimizing Plant Allocation for Bioethanol Production from Agro-residues Considering CO2 Emission and Energy Demand-Supply Balance: A Case Study in Ecuador. Waste and Biomass Valorization, 3(4), 435-442. doi:10.1007/s12649-012-9138-2
Garcia M, J. C., Machimura, T., Matsui, T., & Miyauchi, T. (2014). Estimating the potential and planning of bioethanol production from agro-residues based on a model-predicted NPP under climate change in Ecuador. Journal of Agricultural Meteorology, 70(4), 171-185. doi:10.2480/agrmet.D-13-00027
Garfí, M., Martí-Herrero, J., Garwood, A., & Ferrer, I. (2016). Household anaerobic digesters for biogas production in Latin America: A review. Renewable and Sustainable Energy Reviews, 60, 599-614. doi:https://doi.org/10.1016/j.rser.2016.01.071
Gavilanes, F. Z., Guedes, C. L. B., Silva, H. R., Nomura, R. G., & Andrade, D. S. (2019). Physic Nut Seed Cake Methanation and Chemical Characterization of Anaerobic Bio-digested Substrate. Waste and Biomass Valorization, 10(5), 1267-1276. doi:10.1007/s12649-017-0148-y
Ghysels, S., Estrada Léon, A. E., Pala, M., Schoder, K. A., Van Acker, J., & Ronsse, F. (2019). Fast pyrolysis of mannan-rich ivory nut (Phytelephas aequatorialis) to valuable biorefinery products. Chemical Engineering Journal, 373, 446-457. doi:https://doi.org/10.1016/j.cej.2019.05.042
Graefe, S., Dufour, D., Giraldo, A., Muñoz, L. A., Mora, P., Solís, H., . . . Gonzalez, A. (2011). Energy and carbon footprints of ethanol production using banana and cooking banana discard: A case study from Costa Rica and Ecuador. Biomass and Bioenergy, 35(7), 2640-2649. doi:https://doi.org/10.1016/j.biombioe.2011.02.051
Guerrero, A. B., & Muñoz, E. (2018). Life cycle assessment of second generation ethanol derived from banana agricultural waste: Environmental impacts and energy balance. Journal of Cleaner Production, 174, 710-717. doi:https://doi.org/10.1016/j.jclepro.2017.10.298
Hache, E. (2018). Do renewable energies improve energy security in the long run? International Economics, 156, 127-135. doi:https://doi.org/10.1016/j.inteco.2018.01.005
Heredia Salgado, M. A., Coba S, J. A., & Tarelho, L. A. C. (2020). Simultaneous production of biochar and thermal energy using palm oil residual biomass as feedstock in an auto-thermal prototype reactor. Journal of Cleaner Production, 266, 121804. doi:https://doi.org/10.1016/j.jclepro.2020.121804
Heredia Salgado, M. A., Tarelho, L. A. C., Matos, M. A. A., Rivadeneira, D., & Narváez C, R. A. (2019). Palm oil kernel shell as solid fuel for the commercial and industrial sector in Ecuador: tax incentive impact and performance of a prototype burner. Journal of Cleaner Production, 213, 104-113. doi:https://doi.org/10.1016/j.jclepro.2018.12.133
Heredia Salgado, M. A., Tarelho, L. A. C., Rivadeneira, D., Ramírez, V., & Sinche, D. (2020). Energetic valorization of the residual biomass produced during Jatropha curcas oil extraction. Renewable Energy, 146, 1640-1648. doi:https://doi.org/10.1016/j.renene.2019.07.154
Hidalgo-Crespo, J., Amaya, J., Jervis, F., Moreira, C., Crespo-Vaca, T., Zabala-Ortiz, G., & Coello-Pisco, S. J. R. I. d. S. e. T. d. I. (2019). Waste-To-Energy Incineration: Evaluation of energy potential for urban domestic waste in Guayaquil. (E23), 392-403.
Jara-Samaniego, J., Pérez-Murcia, M. D., Bustamante, M. A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., . . . Moral, R. (2017). Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. PLOS ONE, 12(7), e0181621. doi:10.1371/journal.pone.0181621
Kumar, A., Jones, D. D., & Hanna, M. A. (2009). Thermochemical Biomass Gasification: A Review of the Current Status of the Technology. Energies, 2(3). doi:10.3390/en20300556
Kumar, B., Smita, K., Sánchez, E., Stael, C., & Cumbal, L. (2016). Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb2+ and Cu2+ ions. Ecological Engineering, 93, 152-158. doi:https://doi.org/10.1016/j.ecoleng.2016.05.034
Larrea, F. A., Salazar, S., Andino, C., Ona, D., Benalcazar, M., Mora, J., . . . Alvarez-Barreto, J. F. J. C. E. (2020). Comparison of Bioethanol Production of Starches from Different Andean Tubers. 80.
Leyva, L. L. L., Santos, Y. M., Granda, I. D. H., Orges, C. A. M., Palacios, S. M. V., & Chapi, R. M. V. Design of a Lab-scale Anaerobic Biodigester for Renewable Energy from Municipal Solid Waste.
Loor, M. C., Andrade, F., Lizarzaburu, L., & Masache, M. (2017). Valoración económica de los cobeneficios del aprovechamiento energético de los residuos agrícolas en el Ecuador. Retrieved from https://repositorio.cepal.org/handle/11362/41830
M, J. C. G., Machimura, T., & Matsui, T. (2013). A Nation-wide Planning of Agro-residue Utility for Bioethanol Production and Power Generation in Ecuador. Energy Procedia, 34, 57-63. doi:https://doi.org/10.1016/j.egypro.2013.06.733
Mantuano, J. L. S., Macías, M. E. V., Toapanta, E. S. S., Palma, K. S. T., Giraldo, M. F. V. J. I. j. o. p. s., & engineering. (2020). Obtaining biogas product from biological residues vaccines in Chone city. 4(1), 21-28.
Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555. doi:https://doi.org/10.1016/j.rser.2015.02.032
Margallo, M., Ziegler-Rodriguez, K., Vázquez-Rowe, I., Aldaco, R., Irabien, Á., & Kahhat, R. (2019). Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective: A review for policy support. Science of The Total Environment, 689, 1255-1275. doi:https://doi.org/10.1016/j.scitotenv.2019.06.393
MERNNR. (2019). Ministerio de Energía y Recursos Naturales no Renovables: K007 Producción de Aceite de Piñón para plan piloto de generación eléctrica en Galápagos - Fase II. Retrieved from https://www.recursosyenergia.gob.ec/wp-content/uploads/2019/11/gprproduccion-aceite-pinon.pdf
Mohd Azhar, S. H., Abdulla, R., Jambo, S. A., Marbawi, H., Gansau, J. A., Mohd Faik, A. A., & Rodrigues, K. F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports, 10, 52-61. doi:https://doi.org/10.1016/j.bbrep.2017.03.003
Muñoz Espinoza, M., Barros-Rodríguez, M., Valencia Nuñez, R., Mera Andrade, R., Artieda-Rojas, J., Najarro, R. N., . . . Agroecosystems, S. (2019). Biogas Production and in Vitro CH4 from Excrement of Cattle, Sheep, Pigs and Hen. 22(2019), 833-836.
Nallathambi Gunaseelan, V. (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, 13(1), 83-114. doi:https://doi.org/10.1016/S0961-9534(97)00020-2
Narváez C, R. A., Ramírez, V., Chulde, D., Espinoza, S., & López-Villada, J. (2015). Microwave Pyrolysis Process Potential of Waste Jatropha Curcas Seed Cake. In A. Sayigh (Ed.), Renewable Energy in the Service of Mankind Vol I: Selected Topics from the World Renewable Energy Congress WREC 2014 (pp. 91-100). Cham: Springer International Publishing.
Narváez, R., Vargas, G., & Espinoza, F. (2013). Potential of Waste-to- Energy Implementation in Ecuador. International Journal of Energy Engineering, 3(6), 279-286. doi:10.5923/j.ijee.20130306.01
Nussbaumer, T. (2003). Combustion and Co-combustion of Biomass:"‰ Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy & Fuels, 17(6), 1510-1521. doi:10.1021/ef030031q
Pazmiño-Hernandez, M., Moreira, C. M., & Pullammanappallil, P. (2019). Feasibility assessment of waste banana peduncle as feedstock for biofuel production. Biofuels, 10(4), 473-484. doi:10.1080/17597269.2017.1323321
Pelaez, M., García, M., Barriga, A., Herrero, J., Andrés, M., Mayer, F., & García, J. J. E. R. e. e. E. S. a., tendencias y perspectivas. (2015). Estado del uso de la biomasa para la producción de bioenergía, biocombustibles y bioproductos en Ecuador. 29-115.
Pérez-Arévalo, J. J., Callejón-Ferre, A. J., Velázquez-Martí, B., & Suárez-Medina, M. D. (2015). Prediction models based on higher heating value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). Journal of Renewable and Sustainable Energy, 7(5), 053122. doi:10.1063/1.4934593
Pérez-Arévalo, J. J., & Velázquez-Martí, B. (2018). Evaluation of pruning residues of Ficus benjamina as a primary biofuel material. Biomass and Bioenergy, 108, 217-223. doi:https://doi.org/10.1016/j.biombioe.2017.11.017
Pérez Arévalo, J. J., & Velázquez Martí, B. (2020). Characterization of teak pruning waste as an energy resource. Agroforestry Systems, 94(1), 241-250. doi:10.1007/s10457-019-00387-3
Ponce-Jara, M. A., Castro, M., Pelaez-Samaniego, M. R., Espinoza-Abad, J. L., & Ruiz, E. (2018). Electricity sector in Ecuador: An overview of the 2007-2017 decade. Energy Policy, 113, 513-522. doi:https://doi.org/10.1016/j.enpol.2017.11.036
Popp, J., Lakner, Z., Harangi-Rákos, M., & Fári, M. (2014). The effect of bioenergy expansion: Food, energy, and environment. Renewable and Sustainable Energy Reviews, 32, 559-578. doi:https://doi.org/10.1016/j.rser.2014.01.056
Portero-Barahona, P., Carvajal-Barriga, E. J., Martín-Gil, J., & Martín-Ramos, P. (2019). Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment. Energies, 12(9). doi:10.3390/en12091703
Posso, F., Narváez C, R. A., Siguencia, J., & Sánchez, J. (2019). Use of Municipal Solid Waste (MSW)-Derived Hydrogen in Ecuador: Potential Applications for Urban Transportation. Waste and Biomass Valorization, 10(6), 1529-1537. doi:10.1007/s12649-017-0161-1
Posso, F., Siguencia, J., & Narváez, R. (2020). Residual biomass-based hydrogen production: Potential and possible uses in Ecuador. International Journal of Hydrogen Energy, 45(26), 13717-13725. doi:https://doi.org/10.1016/j.ijhydene.2019.09.235
Pupiales, B., Galeas, S., Guerrero, V., Proano, J., Leon, M., & Alvarez-Barreto, J. J. C. E. T. (2020). Generation of Porous Scaffolds from Cacao Mesocarp for Biomedical Applications Using Surface Response Methodology. 79, 151-156.
Rahman, M. M., B. Mostafiz, S., Paatero, J. V., & Lahdelma, R. (2014). Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing. Renewable and Sustainable Energy Reviews, 29, 108-119. doi:https://doi.org/10.1016/j.rser.2013.08.092
Ramírez, V., Martí-Herrero, J., Romero, M., & Rivadeneira, D. (2019). Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends. Journal of Cleaner Production, 215, 1095-1102. doi:https://doi.org/10.1016/j.jclepro.2019.01.132
Renovable, M. d. E. y. E. (2014). ATLAS Bioenergético de la República del Ecuador. Retrieved from
Rivadeneira, D., Ramírez, V., Narváez, R., Heredia, M., Antonio da Cruz, L., & Amador-de Matos, A. (2017). FIRST ANALYSIS OF EMISSIONS DURING THE COMBUSTION OF
PELLETS OF JATROPHA CURCAS AT 2635 MASL. Investigación y Saberes, 3(3), 65-79.
Rivera-González, L., Bolonio, D., Mazadiego, L. F., & Valencia-Chapi, R. (2019). Long-Term Electricity Supply and Demand Forecast (2018-2040): A LEAP Model Application towards a Sustainable Power Generation System in Ecuador. Sustainability, 11(19). doi:10.3390/su11195316
Romero, H. I., Vega, C. A., Zuma, J. D., Pesantez, F. F., Camacho, A. G., & Redrovan, F. F. (2020). Comparison of the methane potential obtained by anaerobic codigestion of urban solid waste and lignocellulosic biomass. Energy Reports, 6, 776-780. doi:https://doi.org/10.1016/j.egyr.2019.10.013
Runge, P., Sölch, C., Albert, J., Wasserscheid, P., Zöttl, G., & Grimm, V. (2019). Economic comparison of different electric fuels for energy scenarios in 2035. Applied Energy, 233-234, 1078-1093. doi:https://doi.org/10.1016/j.apenergy.2018.10.023
Salgado, M. (2017). Cuesco de palma africana, un nuevo combustible para uso comercial en Ecuador: análisis económico y evidencia experimental.
Salgado, M. A. H., Tarelho, L. A. C., & Matos, A. (2020). Analysis of Combined Biochar and Torrefied Biomass Fuel Production as Alternative for Residual Biomass Valorization Generated in Small-Scale Palm Oil Mills. Waste and Biomass Valorization, 11(1), 343-356. doi:10.1007/s12649-018-0467-7
Serrano, J., Mejía, W., Ortiz, J., Sánchez, A., & Zalamea, S. (2017). Determinación del Potencial de Generación Eléctrica a Partir de Biomasa en el Ecuador. Revista de la Facultad de Ciencias Químicas, 17, 41-61.
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189. doi:https://doi.org/10.1016/j.enpol.2008.08.016
Teichmann, D., Arlt, W., & Wasserscheid, P. (2012). Liquid Organic Hydrogen Carriers as an efficient vector for the transport and storage of renewable energy. International Journal of Hydrogen Energy, 37(23), 18118-18132. doi:https://doi.org/10.1016/j.ijhydene.2012.08.066
UN-HABITAT. (2010). WTE INDUSTRY IN LATINAMERICA. Retrieved from https://mirror.unhabitat.org/downloads/docs/10740_1_594319.pdf
Vaca-Jiménez, S., Gerbens-Leenes, P. W., & Nonhebel, S. (2019). The water footprint of electricity in Ecuador: Technology and fuel variation indicate pathways towards water-efficient electricity mixes. Water Resources and Industry, 22, 100112. doi:https://doi.org/10.1016/j.wri.2019.100112
Vargas, D. C., Salazar, S., Mora, J. R., Van Geem, K. M., & Almeida Streitwieser, D. (2020). Experimental and theoretical study of the thermal decomposition of ethyl acetate during fast pyrolysis. Chemical Engineering Research and Design, 157, 153-161. doi:https://doi.org/10.1016/j.cherd.2020.03.001
Vásquez, Z. S., de Carvalho Neto, D. P., Pereira, G. V. M., Vandenberghe, L. P. S., de Oliveira, P. Z., Tiburcio, P. B., . . . Soccol, C. R. (2019). Biotechnological approaches for cocoa waste management: A review. Waste Management, 90, 72-83. doi:https://doi.org/10.1016/j.wasman.2019.04.030
Vega-Quezada, C., Blanco, M., & Romero, H. (2017). Synergies between agriculture and bioenergy in Latin American countries: A circular economy strategy for bioenergy production in Ecuador. New Biotechnology, 39, 81-89. doi:https://doi.org/10.1016/j.nbt.2016.06.730
Velázquez-Martí, B., Gaibor-Cházvez, J., Niño-Ruiz, Z., & Narbona-Sahuquillo, S. (2018). Complete characterization of pruning waste from the lechero tree (Euphorbia laurifolia L.) as raw material for biofuel. Renewable Energy, 129, 629-637. doi:https://doi.org/10.1016/j.renene.2018.06.050
Velazquez-Marti, B., Pérez-Pacheco, S., Gaibor-Chávez, J., & Wilcaso, P. (2016). Modeling of Production and Quality of Bioethanol Obtained from Sugarcane Fermentation Using Direct Dissolved Sugars Measurements. Energies, 9(5). doi:10.3390/en9050319
Vera, L. M., Bermejo, D., Uguña, M. F., Garcia, N., Flores, M., & González, E. (2019). Fixed bed column modeling of lead(II) and cadmium(II) ions biosorption on sugarcane bagasse. Environmental Engineering Research, 24(1), 31-37. doi:10.4491/eer.2018.042