Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN A: CIENCIAS EXACTAS Y FÍSICAS

Vol. 2 Núm. 2 (2010)

Estudio computacional cuanto-mecánico de la interacción del hidrógeno molecular

DOI
https://doi.org/10.18272/aci.v2i2.19
Enviado
julio 2, 2015
Publicado
2009-04-01

Resumen

El potencial del ZnO4(1,4-bencenodicarboxilato)3 [MOF-5] para almacenar hidrógeno vía adsorción es evaluado a través de cálculos cuanto-mecánicos de la energía de interacción entre moléculas de H2 y diferentes sitios de la estructura cristalina de este material. En una primera fase del estudio, la energía de interacción es calculada en modelos periódi­cos usando el funcional B3LYP como nivel de teoría junto con un set de funciones base localizadas de tipo Gaussiano que es usado para expandir la función de onda del siste­ma. Posteriormente, con el objetivo de obtener resultados que describan mejor el proceso, se incluye a los valores calculados la contribución de las fuerzas de dispersión mediante el método P-ONIOMusando cálculos MP2 en modelos moleculares extraídos de la estructura cristalina.

viewed = 578 times

Citas

  1. Conti, J. J., Holtberg, P. D., Beamon, J. A., Sweetnam, A. M., and Kydes, G. E. 2009. "Annual Energy Outlook 2009. In: Energy Information Administration" Available on EIA web site at: http://www.eia.doe.gov/oiaf/aeo/
  2. Turner, J. A. 2001. "A relizable renewable energy futu­re." Science. 414,332-337.
  3. Crabtree, G. W., Dresselhaus, M. . S., and Buchanan, M. V 2004. "The hydrogen eonomy." Phys. Today. 57, 39-44.
  4. Schlapbach, L. 2009. "Technology: Hydrogen-fuelled vehicles." Nature. 460:, 809-811.
  5. Zhou, L. 2005. "Progress and problems in hydrogen sto­rage methods." Renew. Sust. Energ. Rev. 9, 395-408.
  6. Zuttel, A. 2004. "Hydrogen storage methods." Naturwis­senschaften. 414, 345-352.
  7. Bhatia, S. K. and Myers, A. L. 2006. "Optimum condi­tions for adsorptive storage." Langmuir. 22, 1688-1700.
  8. Li, H., Eddaoudi, M., O"™Keeffe, M., and Yaghi, O. M. 1999. "Design and synthesis of an exceptionally stable and highly porous metal-organic framework." Nature. 402, 276-279.
  9. Yildirim, T. and Hartman, M. R. 2005. "Direct observa­tion of hydrogen adsorption sites and nanocague forma­tion in metal-organic frameworks." Phys. Rev. Lett. 95, 215504.
  10. Bilbao crystallographic server - the crystallograp­hic site at the condensed matter physics department of the University of Basque country. Available at: http://www.cryst.ehu.es
  11. Dovesi, R., Saunders, V R., Roetti, C., Orlando, R., amdN. M. Harrison, C. M. Z.-W., Doll, K., Civalleri, B., Bush, I. J., D"™Arco, P., and Llunell, M. "CRYSTAL06 user"™s manual" Università degli Studi di Torino. Torino, Italy.
  12. Becke, A. D. 1993. "Density-functional thermochemis­try. III. the role of exact exchange." J. Chem. Phys. 98, 5648-5652.
  13. Rowsell, J. L. C., Eckert, J., and Yaghi, O. M. 2005. "Characterization of H2 binding sites in prototypical metal-organic framework by inelastic neutron scatteri­ng." J.Am. Chem. Soc. 127, 14904-14910.
  14. Creamer, C. J. 2004. "Essentials of Computational Che­mistry: Theories and Models", Wiley. New York, NY.
  15. Wormer, P. E. S. and van derAvoird, A. 2005 "Forty years of ab initio calculations on intermolecular forces." In C. E. Dykstra, G. Frenking, K. Kim, and G. E. Scu­seria, (ed.), "Theory and Applications of Computational Chemistry The First Forty Years", 1047-1091 Elsevier.
  16. Kestner, N. R. 1968. "He-He interaction in the SCFMO approximation." J. Chem. Phys. 48, 252-257.
  17. Boys, F. S. and Bernardi, F. 1970. "The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors." Mol. Phys.. 19,553-566.
  18. Kutzelnigg, W. 1976. "Quantum chemical calculation of intermolecular potentials, mainly of van der Waals type." Farady Disc. 62, 185-196.
  19. Roggero, I., Civalleri, B., and Ugliengo, P. 2001. "Mode­ling physisorption with the ONIOM method: the case of NH3 at the isolated hydroxil group of the silica surface." Chem. Phys. Lett. 341,625-632.
  20. Ugliengo, P. and Damin, A. 2002. "Are dispersive forces relevant for CO adsorption on the MgO(001) surface?." Chem. Phys. Lett. 366, 683-690.
  21. Civalleri, B., Torres, F. J., Demichelis, R., Terentyev, A., and Ugliengo, P. 2009. "Ab initio investigation of the interaction of H2 with lithium exchanged low-silica cha- bazites." J. Ph. Conf Series. 117, 012012.
  22. Torres, F. J., Civalleri, B., Terentyev, A., Ugliengo, P., and Pisani, C. 2007. "Theoretical study of molecular hydrogen adsorption in Mg-exchanged chabazite." J. Chem. Phys. C. 111, 1871-1873.
  23. Torres, F. J., Vitillo, J. G., Civalleri, B., Ricchiardi, G., and Zecchina, A. 2007. "Interaction of H2 with alkali- metal-exchanged zeolites: a quantum mechanical study." J. Chem. Phys. C. 111, 2505-2513.
  24. Torres, F. J., Civalleri, B., Pisani, C., and Ugliengo, P. 2006. "An ab initio periodic study of acidic chabazite as a candidate for dihydrogen storage." J. Chem. Phys. B. 110, 10467-10474.
  25. Pisani, C., Busso, M., Capecchi, G., Casassa, S., Dovesi, R., Maschio, L., Zicovich-Wilson, C. M., and Schütz, M. 2005. "Local-MP2 electron correlation method for nonconducting crystals." J. Chem. Phys. 122, 094113.
  26. Suhai, S. and Ladik, J. 1982. "Perturbation theoretical calculation of the correlation energy in an infinite meta­llic hydrogen chain." J. Phys. Chem. 15, 4327-4337.
  27. Sun, J.-Q. and Bartlett, R. J. 1996. "Second-order many- body perturbation-theory calculations in extended sys­tems." J. Chem. Phys. 104, 8553-8565.
  28. Werner, H. J., Knowles, P. J., Lindh, R., Manby, F. R., Schütz, M., Celani, P., Korona, T., Rauhut, G., Amos, R. D., Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Hampel, C., Hetzer, G., Lloyd, A. W., McNicholas, S. J., Meyer, W., Mura, M. E., Nicklass, A., Palmieri, P., Pitzer, R., Schu­mann, U., Stoll, H., Stone, A. J., Tarroni, R., and Thors- teinsson, T. 2006 "Molpro, version 2006.1, a package of ab initio programs." Available at: http://www.molpro.net
  29. Fan, W. J., Abiyasa, A. P., Tan, S. T., Yu, S. F., Sun, X. W., Xia, J. B., Yeo, Y. C., Li, M. F., and Chong, T. C. 2006. "Electronic structures of wurtzite ZnO and ZnO/MgZnO quantum well." J. Cryst. Growth. 287,28­33.
  30. Civalleri, B., Napoli, F., Noël, Y, Roetti, C., and Dove­si, R. 2006. "Ab-initio prediction of materials properties with crystal: MOF-5 as a case study." Crys. Eng. Comm. 8,364-371.
  31. Spencer, E. C., Howard, J. A. K., McIntyre, G. J., Rowsell, J. L. C., and Yaghi, O. M. 2006. "Determi­nation of the hydrogen adsorption sites in Zn4O(1,4- benzenedicarboxylate) by single crystal neutron diffrac­tion." Chem. Comm. 278-280.
  32. Mulder, F. M., Dingemans, T. J., Wagemaker, M., and Kearley, G. J. 2005. "Modelling of hydrogen adsorption in the metal organic framework MOF-5." Chem. Phys. 317, 113-118.
  33. Sagara, T., Klassen, J., and Ganz, E. 2004. "Compu­tational study of hydrogen binding by metal-organic framework-5." J. Chem. Phys. 121, 12543-12547.
  34. Sagara, T., Klassen, J., Ortony, J., and Ganz, E. 2005. "Binding energies of hydrogen molecules to isoreticu­lar metal-organic framework materials." J. Chem. Phys. 123,014701.
  35. Mueller, T. and Ceder, G. 2005. "A density functional theory study of hydrogen adsorption in MOF-5." J. Phys. Chem. B. 109, 17974-17983.
  36. Hübner, O., Glöss, A., Fichtner, M., and Klopper, W. 2004. "On the interaction of dihydrogen with aromatic systems." J. Phys. Chem. A. 108, 3019-3023.
  37. Negri, F. and Saending, N. 2007. "Tuning the physisor- ption of molecular hydrogen: Binding to aromatic, he­teroaromatic and metal-organic frameworks materials." Theor Chem. Acc. 118,149-163.