Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN A: CIENCIAS EXACTAS

Vol. 5 Núm. 1 (2013)

Estudio Teórico Cuanto Mecánico de Cristales Formados por Nanoclusters de Nitruro de Boro [BiNi, i = 12]

DOI
https://doi.org/10.18272/aci.v5i1.111
Enviado
septiembre 29, 2015
Publicado
2013-04-08

Resumen

Aunque se ha sugerido que los clusters de nitruro de boro (i.e., BiNi, i = 12-24) son capaces de agregarse y formar estructuras periódicas estables, se conoce poco sobre las propiedades electrónicas y vibracionales de estos sólidos. En este trabajo, un estudio cuanto mecánico del sistema B12N12 es presentado utilizando modelos periódicos para caracterizar teóricamente este material y determinar sus posibles aplicaciones tales como la capacidad para absorber moléculas huéspedes, en particular hidrógeno molecular. Todos los cálculos se realizaron mediante el programa CRYSTAL09 usando el funcional híbrido B3LYP (HF-DFT) y funciones base localizadas de tipo Gaussiano de diferente flexibilidad. Mapas de potencial electrostático de diferentes planos del sistema B12N12 mostraron que la estructura cristalina tiene sitios capaces de alojar especies moleculares debido a su baja densidad electrónica. Las frecuencias vibracionales calculadas permitieron la identificación de zonas bien definidas del espectro IR de este sólido. Además se realizó un estudio de almacenamiento de moléculas huésped en las superficies del cristal en planos seleccionados.

viewed = 973 times

Citas

  1. Botas, J.; Calles, J.; Dufour, J. 2005. "La Economía Del Hidrógeno - Una Visión Global sobre la Revolución Energética del Siglo XXI". Revista de la Asociación Española de Científicos, 9.
  2. Cox, P.; Betts, R.; Jones, C.; Spall, S. 2000. "Acceleration of Global Warming Due to Carbon-Cycle F eedbacks in a Coupled Climate Model". Nature, 408: 184-187.
  3. Tans, P.; Fung, I.; Takahashi, T. 1990. "Observational Constraints on the Global Atmospheric CO2 Budget". Science, 247: 1431-1438.
  4. Fyfe, D. 2011. "Oil Market Report". IEA, 1.
  5. UNICS. 2007. "Global Warming Solutions". Union of Concerned Scientists, 1.
  6. BP. 2011. "Statistical Review of World Energy Full Report". B. Dudley, 1.
  7. Boden, T.; Marland, G.; Andres, R. 2009. "Global, Regional, and National Fossil-Fuel CO2 Emissions". Carbon Dioxide Information Analysis Center, 1.
  8. Dunn, S. 2002. "Hydrogen futures: toward a sustainable energy system". International Journal of Hydrogen Energy, 27(3): 235-264.
  9. Bossel, U.; Eliasson, B. 2006. "Energy and the Hydrogen Economy". ABB Switzerland Ltd. Corporate Research: Switzerland, 1.
  10. Brown, T. 2004. "Química: la ciencia central". Pearson Educación, 1.
  11. DOE. 2009. "Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles". Office of Energy Efficiency and Renewable Energy and The Freedom CAR and Fuel Partnership, 1.
  12. DOE. 2011. "Hydrogen Program". Hydrogen, Fuel Cells and Infrastructure Technologies Program, 1.
  13. Gaps, R. 2006. "Hydrogen - Production and Storage". Hydrogen Implementing Agreement, 1.
  14. Essentials, I. 2007. "Hydrogen Production & Distribution". IEA.
  15. van der Berg, A.; Otero, C. 2008. "Materials for Hydrogen Storage: Current Research Trends and Perspectives". Chem. Commun., 1: 668-681.
  16. Jacobser, N. 2009. "Nanotechnology". Chemistry Central Journal, 12: 245-248.
  17. Maubert, M.; Soto, L.; León, A.; Flores, J. 2008. "Nanotubos de Carbono - La era de la nanotecnología". Área de Química de Materiales - Universidad Autónoma Metropolitana, 1.
  18. Whitesides, G. 2005. "Nanoscience, Nanotechnology, and Chemistry". Nanoscience and chemistry, 2(1): 172-179.
  19. Matxain, J.; Eriksson, L.; Mercero, J.; Lopez, X.; Piris, M.; Ugalde, J. 2007. "New Solids Based on Bi2Ni2 Fullerenes". J. Phys. Chem., 111: 13354-13360.
  20. Oku, T.; Nishiwaki, A.; Narita, I. 2004. "Formation and Atomic Structure of B12N12 Nanocage Clusters Studied by Mass Spectrometry and Cluster Calculation". Science and Technology of Advanced Materials, 5(6): 635-638.
  21. Schlegel,H. 1982. "Optimization of equilibrium geometries and transition structures". J. Comp. Chem., 3: 214-218.
  22. Civalleri, B. 2001. "Hartree - fock geometry optimization of periodic systems with the crystal code". Chem. Phys. Lett., 348: 131-138.
  23. Torres, F. 2007. "Quantum Mechanical Study of Hydrogen Storage in Microporous Materials". Dipartimento di Chimica IFM2007, Universita degli Studi di Torino, 1.
  24. Becke, A. 1993. "Density-functional thermochemistry. III. The role of exact exchange". J. Chem. Phys., 98: 5648-5652.
  25. Koch, W.; Holthausen, M. 2001. "A Chemistt"™s Guide to Density Functional Theory". Wiley - VCH, 1.
  26. Ugliengo, P.; Busco, C.; Civalleri, B. 2005. "Carbon monoxide adsorption on alkali and proton - exchanged chabazite: An ab initio periodic study using the CRYSTAL code". Mol. Phys., 103: 2559-2571.
  27. Islam, M.; Bredow, T.; Minot, C. 2006. "Comparison of trigonal B2O3 structures with high and low space-group symmetry". Chem. Phys. Lett., 418: 565-568.
  28. Dovesi, R. 1990. "Ab initio approach to molecular crystals: a periodic Hartree-Fock study of crystalline urea". J. Chem. Phys., 92: 7402-7411.
  29. Gatti, C.; Saunders, V; Roetti, C. 1994. "Crystal-field effects on the topological properties of the electron-density in molecular-crystals - the case of urea". J. Chem. Phys., 101: 10686-10696.
  30. Dovesi, R. 1983. "Hartree - Fock study of lithium hydride with the use of polarizable basis set". Phys. Rev. B, 29: 3591-3600.
  31. Tonigold, K.; Groβ, A. 2010. "Adsorption of small aromatic molecules on the (111) surfaces of noble metals: A density functional theory study with semiempirical corrections for dispersion effects". Journal of Chemical Physics, 132: 1-10.
  32. Ortmann, F.; Bechstedt, F. 2006. "Semiempirical van der Waals correction to the density functional description of solids and molecular structures". Phys. Rev. B, 73: 1-10.
  33. Silvestrelli, P. 2008. "Van der Waals interactions in DFT made easy by Wannier functions". Dipartimento di Fisica "G. Galilei Universita di Padova.
  34. Boys, S.; Bernardi, F. 2002. "The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors". Molecular Physics, 100: 65-73.
  35. Roggero, I.; Civalleri, B.; Ugliengo, P. 2001. "Modeling physisorption with the ONIOM method: the case of NH3 at the isolated hydroxyl group of the silica surface". Chemical Physics Letters, 341: 625-632.
  36. Dovesi, R. 2009. "CRYSTAL09". User"™s Manual, 1.
  37. Hamad, S.; Catlow, R.; Matxain, J.; Ugalde, J. 2005. "Structure and Properties ofZnS Nanoclusters". J. Phys. Chem., 109: 2703-2709.
  38. Narita, I.; Nishiwaki, A.; Oku, T. 2004. "Formation and Atomic Structure of B12N12 Nanocage Clusters Studied by Mass Spectrometry and Cluster Calculation". ScienceDirect, 5(6): 635-638.
  39. Ashcroft, N.; Mermin, N. 1976. "Solid state physics". Saunders College, 1.
  40. Eisberg, R.; Resnick, R. 1992. "Física Cuántica - Átomos, Moléculas, Sólidos, Núcleos y Partículas". Turtleback Books, 1.
  41. Tang, C. 2002. "Multiwalled Boron Nitride Nanotubes: Growth, Properties, and Applications". J. Am. Chem. Soc., 124: 1450.
  42. Ma, R. 2002. "Hydrogen Uptake in Boron Nitride Nanotubes at Room Temperature". J. Am. Chem. Soc., 124: 7672-7673.
  43. Oku, T.; Nishiwaki, A.; Narita, I. 2004. "Formation and atomic structures of BnNn (n = 24-60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations". PhysicaB, 351: 184.
  44. Koi, N. 2005. "Formation and Atomic Structure of Boron Nitride Nanotubes with Cup-Stacked and Fe Nanowire encapsulated Structures". Diamond Relat. Mater., 14: 1190.
  45. Torres, F. 2006. "An Ab Initio Periodic Study of Acidic Chabazite as a Candidate for Dihydrogen Storage". J. Phys. Chem. B, 110: 10467-10474.
  46. Civalleri, B. 2008. "Ab Initio investigation of the interaction of H2 with lithium exchanged low-silica chabazites". Journal of Physics, 117: 012012.