Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 12 No. 1 (2020)

Control of a system of energy based on supercapacitors to mitigate the voltage gaps at the point of common coupling

DOI
https://doi.org/10.18272/aci.v12i1.960
Submitted
September 26, 2017
Published
2020-07-15

Abstract

This article presents the design of an energy injection system based on supercapacitors
in order to reduce the voltage gaps caused by the random connection of electric
machines that are used in industrial activities, with the aim of improving the quality of
energy at the common connection point. Therefore, a model of the energy distribution
of the studied case, the energy storage that is composed of supercapacitors, the twoway energy conversion and the current and voltage control systems are made. The
designed system allows the injection of a power of 22,8 kW with a capacity of 1.2 Wh,
compensating the transients produced by the connected loads to the network in order
to keep the voltage levels within the established standards given by IEEE 1159, CONELEC
004/01 y NP EN 50160-2010.

viewed = 650 times

References

  1. Bose A., Tomsovic K. & Vaziri M. (2004). A Directed Graph Formulation of the Multistage Distribution Expansion
  2. Problem. IEEE Transactions on Power Delivery, 19, 1335 – 1341. doi: http://doi.org/10.1109/TPWRD.2004.829146
  3. TECSUP (2017). Programa de Extensión para profesional-Sistemas de Distribución de Energía Eléctrica. Recuperado de:
  4. https://es.scribd.com/document/179746191/sistemas-de-distribucion
  5. Banco Central del Ecuador (2017). Reporte de Minería. Dirección Nacional de Síntesis Macroeconómico. Recuperado
  6. el 11 de noviembre de 2017 de: https://web.archive.org/web/20170926215322/https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ReporteMinero012017.pdf
  7. Información de Historia, Cultura y Turismo de Cuenca-Azuay (2017, mayo 06). Revista Cuenca Ilustre – Ecuador.
  8. Recuperado de: https://web.archive.org/web/20170616014309/https://patomiller.wordpress.com/
  9. Einzmann H. (1991). Tres Chorreras: Minería Artesanal e Informal en el Cantón Pucará. Ecuador: Adoum ediciones.
  10. Criollo H. & Hernández F. (2017). Minería Artesanal del oro de Aluvión Mocoa, Putumayo, Amazonia Colombiana.
  11. Universidad Nacional de Colombia: Sede Amazonia-Leticia. Recuperado de: https://web.archive.org/web/20170926220714/http://www.bdigital.unal.edu.co/53064/6/9587015630.preliminares.pdf
  12. Deshpande G. & Sankeshwari S. (2013). Speed Control of Induction Motors Using Hybrid PI Plus Fuzzy Controller.
  13. International Journal of Advances in Engineering & Technology, 2254 – 2258.
  14. González L. (2011). Mejora de la eficiencia y de las prestaciones dinámicas en procesadores electrónicos de potencia para
  15. pequeños aerogeneradores sincrónicos operando en régimen de velocidad variable (Tesis de doctorado). Universidad
  16. Politécnica de Valencia, España.
  17. Bardemaker F. (2006). Modulação Vetorial aplicada a Retificadores Trifásicos PWM Unidirecionais (Tese de doutorado).
  18. Universidad Federal de Santa Catarina, Brasil
  19. Barbi I., Morais A. & Tofoli F. (2015). Modelling, Digital Control and Implementation of a Three-Phase Four-Wire
  20. Power Converter Used as A Power Redistribution Device. IEEE Transactions on Industrial Informatics, 12, 2 –5.
  21. doi: http://doi.org/10.1109/TII.2016.2544248
  22. Toliyat H., Talebi S., McMUllen P., Huynh C. & Filatov A. (2005). Advanced High-Speed Flywheel Energy Storage
  23. Systems for Pulsed Power Applications. IEEE Electric Ship Technologies Symposium. doi: http://doi.org/10.1109/
  24. ESTS.2005.1524703