Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 16 No. 2 (2024)

Mechanical characterization of a material composed of polyester resin reinforced with Eucalyptus bark

DOI
https://doi.org/10.18272/aci.v16i2.3353
Submitted
June 10, 2024
Published
2024-09-04

Abstract

This study aims to evaluate the mechanical performance of a composite material manufactured with different proportions of polyester resin matrix and eucalyptus bark fiber reinforcement. Specimens were prepared with volumetric fractions of 90% matrix - 10% reinforcement, 80% matrix - 20% reinforcement, and 70% matrix - 30% reinforcement, with randomly distributed fibers. Tensile, flexural, and impact tests were conducted according to ASTM standards to determine the mechanical properties of the composite. The results showed a decrease in the tensile and flexural strength of the composite compared to the pure resin, which was attributed to the presence of stress concentrators and low adhesion between the fibers and the matrix. However, an increase in the elastic modulus and impact energy absorbed by the composite material was observed. The combination of 70% matrix and 30% reinforcement presented the best balance of mechanical properties among the different formulations studied. This study highlights the potential of natural fiber-reinforced composite materials as a sustainable alternative to synthetic fibers, taking advantage of the renewable resources available in Ecuador and reducing the environmental impact associated with the production of traditional composite materials. The obtained results contribute to the development of new ecological materials with applications in various industries, promoting the use of natural fibers and encouraging research in this field.

viewed = 413 times

References

  1. S. Kushwaha and A. K. Bagha, “Application of composite materials for vibroacoustic - A review,” Mater. Today Proc., vol. 26, no. xxxx, pp. 1567–1571, 2020, doi: 10.1016/j.matpr.2020.02.321
  2. A. K. Singh, R. Bedi, and B. S. Kaith, “Mechanical properties of composite materials based on waste plastic - a review,” Mater. Today Proc., vol. 26, no. xxxx, pp. 1293–1301, 2019, doi: 10.1016/j.matpr.2020.02.258.
  3. D. K. Rajak, D. D. Pagar, R. Kumar, and C. I. Pruncu, “Recent progress of reinforcement materials: A comprehensive overview of composite materials,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 6354–6374, 2019, doi: 10.1016/j.jmrt.2019.09.068
  4. A. K. Sharma, R. Bhandari, A. Aherwar, and R. Rimašauskiene, “Matrix materials used in composites: A comprehensive study,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1559–1562, 2020, doi: 10.1016/j.matpr.2019.11.086.
  5. G. Sabari Narayanan and K. Senthil Kumar, “Study of mechanical properties of the polymer matrix composite material (solid wool),” Mater. Today Proc., vol. 33, no. xxxx, pp. 2907–2911, 2020, doi: 10.1016/j.matpr.2020.02.792
  6. G. Chethan Kumar, S. M. Baligidad, A. C. Maharudresh, N. Dayanand, and T. N. Chetan, “Development and investigation of the mechanical properties of natural fiber reinforced polymer composite,” Mater. Today Proc., vol. 50, pp. 1626–1631, 2021, doi: 10.1016/j.matpr.2021.09.128.
  7. V. Mahesh, S. Joladarashi, and S. M. Kulkarni, “A comprehensive review on material selection for polymer matrix composites subjected to impact load,” Def. Technol., no. xxxx, 2020, doi: 10.1016/j.dt.2020.04.002
  8. E. L. Sánchez Safont, “Desarrollo y caracterización de compuestos biodegradables basados en polihidroxialcanoatos y fibras lignocelulósicas para aplicaciones de un solo uso,” Repos. Univ. Jaume I, pp. 47–55, 2019.
  9. P. Maithil, P. Gupta, and M. L. Chandravanshi, “Study of mechanical properties of the natural-synthetic fiber reinforced polymer matrix composite,” Mater. Today Proc., no. xxxx, pp. 1–7, 2023, doi: 10.1016/j.matpr.2023.01.245
  10. A. R. Bhat, R. Kumar, and P. K. S. Mural, “Jo u a l P re,” Tribol. Int., p. 108978, 2023, doi: 10.1016/j.triboint.2023.108978
  11. K. Murugan, S. Venkatesh, R. Thirumalai, and S. Nandhakumar, “Fabrication and investigations of kenaf fiber and banana fiber reinforced composite material,” Mater. Today Proc., vol. 37, no. Part 2, pp. 110–114, 2020, doi: 10.1016/j.matpr.2020.04.540
  12. Gaurav, H. Gohal, V. Kumar, and H. Jena, “Study of natural fibre composite material and its hybridization techniques,” Mater. Today Proc., vol. 26, no. xxxx, pp. 1368–1372, 2019, doi: 10.1016/j.matpr.2020.02.277.
  13. E. A. Llanes-Cedeño, D. Peralta-Zurita, M. Pucha-Tambo, and J. C. Rocha-Hoyos, “Caracterización mecánica a flexión de materiales compuestos con matriz fotopolimérica reforzados con fibras de abacá y cabuya mediante impresión 3D Mechanical Flexural Characterization of Composite Materials with Photopolymer Matrix Reinforced with Abaca,” Ingenius, no. 22, pp. 100–112, 2019.
  14. J. B. Sajin, P. Babu Aurtherson, J. S. Binoj, N. Manikandan, M. S. Senthil Saravanan, and T. M. Haarison, “Influence of fiber length on mechanical properties and microstructural analysis of jute fiber reinforced polymer composites,” Mater. Today Proc., vol. 39, no. xxxx, pp. 398–402, 2020, doi: 10.1016/j.matpr.2020.07.623
  15. K. Umanath, M. K. Prabhu, A. Yuvaraj, and D. Devika, “Fabrication and analysis of Master leaf spring plate using carbon fibre and pineapple leaf fibre as natural composite materials,” Mater. Today Proc., vol. 33, no. xxxx, pp. 183–188, 2020, doi: 10.1016/j.matpr.2020.03.790
  16. D. Getu, R. B. Nallamothu, M. Masresha, S. K. Nallamothu, and A. K. Nallamothu, “Production and characterization of bamboo and sisal fiber reinforced hybrid composite for interior automotive body application,” Mater. Today Proc., vol. 38, no. xxxx, pp. 2853–2860, 2020, doi: 10.1016/j.matpr.2020.08.780
  17. A. de P. Barbosa, F. Muylaert Margem, C. C. G. Oliveira, N. Tonini Simonassi, F. de Oliveira Braga, and S. Neves Monteiro, “Charpy toughness behavior of eucalyptus fiber reinforced polyester matrix composites,” Mater. Sci. Forum, vol. 869, pp. 227–232, 2016, doi: 10.4028/www.scientific.net/MSF.869.227
  18. M. B. Sartor, H. D. M. Prosdocini, M. D. O. Gondak, G. R. F. Bronzato, and A. L. Leão, “Produção E Caracterização Mecânica Do Compósito De Polipropileno E Casca De Eucalipto,” Energ. Na Agric., vol. 32, no. 4, p. 342, 2017, doi: 10.17224/energagric.2017v32n4p342-348
  19. C. G. d. Oliveira, F. M. Margem, S. N. Monteiro, and F. P. D. Lopes, “Comparison between tensile behavior of epoxy and polyester matrix composites reinforced with eucalyptus fibers,” J. Mater. Res. Technol., vol. 6, no. 4, pp. 406–410, 2017, doi: 10.1016/j.jmrt.2017.08.002
  20. C. G. de Oliveira et al., “Tensile Behavior of Epoxy Matrix Composites Reinforced with Pure Ramie Fabric,” Miner. Met. Mater. Ser., vol. Part F7, pp. 415–421, 2017, doi: 10.1007/978-3-319-51382-9_45
  21. ASTM Committee D30, “D3039/D3039M: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” Annu. B. ASTM Stand., vol. 15, pp. 1–13, 2017, [Online]. Available: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Standard+Test+Method+for+Tensile+Properties+of+Polymer+Matrix+Composite+Materials#1
  22. ASTM, “Astm D 7264,” ASTM Stand., vol. i, pp. 1–11, 2007.
  23. ASTM International, “Standard test method for impact testing of miniaturized Charpy V-notch specimens,” ASTM B. Stand., no. September, pp. 1–6, 2013, doi: 10.1520/E2248-12.1