Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 16 No. 2 (2024)

Identification of gastrointestinal parasites in waterfowl at Yahuarcocha lagoon, Imbabura, Ecuador: Parasitic gastrointestinal infections in waterfowl

Submitted
April 23, 2024
Published
2024-08-07
Versions

Abstract

Parasitism in wild birds is an area of study of vital importance within ecology and animal health. These infections, caused by a variety of parasites, can significantly impact the health, behavior, and dynamics of bird populations. The interaction between parasites and their avian hosts is complex and can be influenced by environmental, genetic, and behavioral factors. Understanding these processes is crucial for wildlife management, biodiversity preservation, and the prevention of zoonotic diseases that can affect humans. Parasitic infections in wild birds are widely distributed globally, with many cases being subclinical due to low parasite concentrations. A total of 48 samples from five species of waterfowl from Yahuarcocha lagoon were analyzed to determine prevalence, infestation intensity, and co-infection of parasite eggs and oocysts in bird feces. Two diagnostic techniques were used: direct coproparasitoscopic method (qualitative) and McMaster technique with Sheater’s solution (quantitative). Four genera of parasites were identified in 23 birds: Ascaridia galli, Heterakis gallinarum, Capillaria sp., and Eimeria spp. The prevalence was estimated at 48 % (23/48), with at least one of the identified genera or species. Host-specific prevalence was 60 % (3/5) in the Common Gallinule; 50 % (9/18) in the Andean Coot; 47 % (8/17) in the Neotropical Cormorant; 40 % (2/5) in the AndeanRuddy Duck; and 33 % (1/3) in the Cattle Egret. Regarding infestation intensity, birds showed average values of 271 (±74) eggs per gram (EPG) of A. galli; 275 (±98) EPG of H. gallinarum; 125 (±25) EPG of Capillaria sp., and 236 (±139) oocysts per gram (OPG) of Eimeria spp. Mixed infections were found in 30.43 % (7/23) of cases, most commonly involving H. gallinarum and Eimeria spp. in two hosts. 

viewed = 646 times

References

  1. Amundson, C.L., Traub, N.J., Smith-Herron, A.J., and Flint, P.L. (2016). Helminth community structure in two species of arctic-breeding waterfowl. International Journal for Parasitology: Parasites and Wildlife. 5(3):263–72. DOI. https:// 10.1016/j.ijppaw.2016.09.002
  2. Poulin, R. (1999). The functional importance of parasites in animal communities: Many roles at many levels? International Journal for Parasitology. 29(6):903–14. DOI. https:// 10.1016/S0020-7519(99)00045-4
  3. Cross, J.H. (1992). Intestinal Capillariasis. Vol. 5, Clinical Microbiology Reviews. Manila, Philippines: American Society for Microbiology; 1992. p. 120–9. Available from: https://journals.asm.org/doi/10.1128/CMR.5.2.120
  4. Bajer, A., Alsarraf, M., Dwużnik, D., Mierzejewska, E.J., Kołodziej-Sobocińska, M., Behnke, J.M. (2020). Rodents as intermediate hosts of cestode parasites of mammalian carnivores and birds of prey in Poland, with the first data on the life-cycle of Mesocestoides melesi. Parasites and Vectors. 13(1):1–10. Available from: https://doi.org/10.1186/s13071-020-3961-2
  5. Valtonen, E.T., Holmes, J.C., and Koskivaara, M. (2011). Eutrophication, pollution, and fragmentation: Effects on parasite communities in roach (Rutilus rutilus) and perch (Perca fluviatilis) in four lakes in central Finland. Canadian Journal of Fisheries and Aquatic Sciences. 54:572–85. Available from: http://www.nrc.ca/cgi-bin/cisti/journals/rp/rp2_abst_e?cjfas_f96-306_54_ns_nf_cjfas54-97
  6. Mercado-Reyes Marisa, S.A. (2010). Presence of Helminths in the Mexican Duck (Anas platyrhynchos diazi) of the Zacatecano Plateau, México. Agrociencia. 44(8):931–9. Available from: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952010000800006
  7. Salgado-Maldonado, G., Caspeta-Mandujano, J. M., Martínez-Ramírez, E., Montoya-Mendoza, J., & Mendoza-Franco, E. F. (2020). Diversity of helminth parasites of freshwater fish in the headwaters of the Coatzacoalcos River, in Oaxaca, Mexico. International Journal for Parasitology: Parasites and Wildlife, 12(5), 142–149. https://doi.org/10.1016/j.ijppaw.2020.05.008.
  8. Leiva, N., George-Nascimento, M., & Muñoz, G. (2015). Carga parasitaria en crustáceos decápodos de la costa central de Chile: ¿existe alguna asociación con la abundancia de los hospedadores definitivos? In Latin american journal of aquatic research (Vol. 43, Issue 4, pp. 726–738). scielocl.
  9. Rubio-Godoy, M., de León, G.P.P., Mendoza-Garfias, B., Carmona-Isunza, M.C., De la Mora, A.N., and Drummond, H. (2011). Helminth Parasites of the Blue-Footed Booby on Isla Isabel, México. Journal of Parasitology. 97(4):636–41. Available from: http://dx.doi.org/10.1645/GE-2675.1
  10. Santoro, M., D’Alessio, N., Di Prisco, F., Veneziano, V., Galiero, G., … Aznar, F.J. (2016). Helminth communities of herons (Aves: Ardeidae) in southern Italy. Parasitology International. 65(4):340–6. Available from: http://dx.doi.org/10.1016/j.parint.2016.04.002
  11. Drago, F. B., Núñez, V., & Díaz, M. D. (2020). Checklist of the nematode parasites of wild birds of Argentina. Revue Suisse de Zoologie, 127(1), 43. https://doi.org/10.35929/RSZ.0005
  12. Hinojosa-Sáez, A. and González-Acuña, D. (2005). Estado actual del conocimiento de helmintos en aves silvestres de Chile. Gayana (Concepción). 69(2), 241–253. https://doi.org/10.4067/s0717-65382005000200004
  13. Ortega-Olivares, M.P., Barrera-Guzmán, A.O., Haasová, I., Salgado-Maldonado, G., Guillén-Hernández, S., and Scholz, T. (2008). Tapeworms (Cestoda: Gryporhynchidae) of Fish-Eating Birds (Ciconiiformes) from Mexico: New Host and Geographical Records. Comparative Parasitology. 75(2):182–95. Available from: https://doi.org/10.1654/4346.1
  14. Ribeiro Machado, A.C., Lima, O.M., and de Barros Araújo, J.L. (2007). Helmintos Parasitosem Aves Anseriformesque Ocorrem Em Goiás. Revista de Patologia Tropical. 35(3):185–198. https://doi.org/10.5216/rpt.v35i3.1879.
  15. Ensuncho Hoyos, C., Herrera Benavides, Y., Montalvo Puente, A., Almanza Palencia, M., Vergara Álvarez, J., … Gómez Mercado, L. (2015). Frecuencia de parásitos gastrointestinales en gallinas criollas (Gallus domesticus) en el departamento de Córdoba, Colombia. Revista Electronica de Veterinaria. 16(6). Available from: http://www.veterinaria.org/revistas/redvet/n060615.html
  16. Ensuncho Hoyos, C.F., Herrera Benavides, Y.M., and Vergara Garay, Ó.D. (2016). Primer registro de Typhlocoelum cucumerinum (Trematoda: Typhlocoelidae) en Cairina moschata domestica (aves: Anatidae) en Colombia. Revista de Medicina Veterinaria. 33(33):35–41. Available from: http://revistas.lasalle.edu.co/index.php/mv/article/download/4049/3103
  17. Carrera-Játiva, P.D., Rodríguez-Hidalgo, R., Sevilla, C., and Jiménez-Uzcátegui, G. (2014). Gastrointestinal parasites in the Galápagos Penguin Spheniscus mendiculus and the flightless cormorant Phalacrocorax Harrisi in the Galápagos Islands. Marine Ornithology. 42(1):77–80.
  18. Jiménez-Uzcátegui, G., Sarzosa, M.S., Encalada, E., Rodríguez-Hidalgo, R., Celi-Erazo, M., Huyvaert, K.P. (2015). Gastrointestinal parasites in the waved albatross (Phoebastria irrorata) of galápagos. Journal of Wildlife Diseases. 51(3):784–786. https://doi.org/10.7589/2014-06-165.
  19. Pardo-Lalvay, A.F., Mendoza-León, C., and Carrera-Játiva, P.D. (2021). Endoparasites in the Synanthropic Feral Pigeon (Columba livia Domestica) in Southern Ecuador. Journal of Zoo and Wildlife Medicine. 52(3):1003–8. Available from: https://doi.org/10.1638/2020-0233
  20. Guevara, E.A., Santander G., T., Espinosa, R., and Graham, C.H. (2021). Aquatic bird communities in Andean lakes of Ecuador are increasingly dissimilar over time. Ecological Indicators. Ecological Indicators, Ecological Indicators, 121(xxxx), 107044. https://doi.org/10.1016/j.ecolind.2020.107044.
  21. Guevara, E.A., Santander, T., and Duivenvoorden, J.F. (2012). Seasonal Patterns in Aquatic Bird Counts at Five Andean Lakes of Ecuador. Waterbirds. 35(4):636–41. Available from: http://www.bioone.org/doi/abs/10.1675/063.035.0413
  22. Van Colen, W., Portilla, K., Oña, T., Wyseure, G., Goethals, P., Muylaert, K. (2017). Limnology of the neotropical high elevation shallow lake Yahuarcocha (Ecuador) and challenges for managing eutrophication using biomanipulation. Limnologica. 67(September 2016):37–44. Available from: http://dx.doi.org/10.1016/j.limno.2017.07.008
  23. Jácome, G., Valarezo, C., and Yoo, C. (2018). Assessment of water quality monitoring for the optimal sensor placement in lake Yahuarcocha using pattern recognition techniques and geographical information systems. Environmental Monitoring and Assessment. 190(4):259. Available from: https://doi.org/10.1007/s10661-018-6639-x
  24. Saelens, P. (2015). Ecological functioning of a eutrophic, high-altitude shallow lake in Ecuador, Laguna Yahuarcocha. Leuven, Kulak; 2015.
  25. Maridueña, A., Chalén, D., Coello, J., Elías, E., Solís-Coello, P., and Aguilar, F. (2011). Mortandad de peces en la laguna de Yahuarcocha, cantón Ibarra, provincia de Imbabura. Febrero 2003 [Internet]. Vol. 2, Boletín Especial. 2011. Available from: https://aquadocs.org/bitstream/handle/1834/4501/ok- MORTANDAD DE PECES EN LA LAGUNA DE YAGUARCOCHA.pdf?sequence=1&isAllowed=y
  26. Terneus, E. (2014). Vegetación acuática y estado trófico de las lagunas andinas de San Pablo y Yahuarcocha, provincia de Imbabura, Ecuador. Revista Ecuatoriana De Medicina Y Ciencias Biológicas. 2:121–31.
  27. Benavides, C. (2021). Evaluación de la diversidad ictiológica del lago Yahuarcocha, provincia de Imbabura [Internet]. Universidad Técnica del Norte; 2021. Available from: http://repositorio.utn.edu.ec/handle/123456789/11753
  28. Benítez-López, A., Mougeot, F., Martín, C.A., Casas, F., Calero-Riestra, M., Viñuela, J. (2011). An improved night-lighting technique for the selective capture of sandgrouse and other steppe birds. European Journal of Wildlife Research. 57(2):389–93. Available from: https://doi.org/10.1007/s10344-010-0437-2
  29. Bowman, D. (2010). Georgi. Parasitología para veterinarios. 11th ed. Madrid: Elsevier España; 2010. 25–27 p.
  30. Thienpont, D. (1979). Diagnóstico de las helmintiasis por medio del examen coprológico. Belgica: Janssen Research Foundation; 1979. 187 p.
  31. Zajak, A. y Conboy, G. (2012). Fecal Examination for the Diagnosis of Parasitism. In Gary A. C. (Ed.), Veterinary Clinical Parasitology (pp. 3–164). Wiley-Blackwell. www.wiley.com/go/zajac
  32. Cruz, G. (2016). Estudio compartivo de ecto y endoparásitos en Gallus gallus y Fulica ardesiaca, en la Laguna Cola, Riobamaba. Universidad Central del Ecuador; 2016.
  33. Organización Mundial de la Salud. (1992). Métodos básicos de laboratorio en parasitología médica. Organización Mundial de la Salud. https://iris.who.int/handle/10665/38858
  34. Sabatini, G. A., de Almeida Borges, F., Claerebout, E., Gianechini, L. S., Höglund, J., Kaplan, R. M., Lopes, W. D. Z., Mitchell, S., Rinaldi, L., von Samson-Himmelstjerna, G., Steffan, P. y Woodgate, R. (2023). Practical guide to the
  35. diagnostics of ruminant gastrointestinal nematodes, liver fluke and lungworm infection: interpretation and usability of results. Parasites and Vectors, 16(1), 58. doi: https://doi.org/10.1186/s13071-023-05680-w
  36. Cervantes-Rivera, K., Villagómez-Cortés, J.A., Arroyo-Lara, A. y Landín-Grandvallet, L.A. (2016). A diagnostic survey of gastroenteric helminths in backyard poultry of a rural village in mexican tropics. ARPN Journal of Agricultural and Biological Science, 11(12), 463–470. https://www.arpnjournals.com/jabs/volume_12_2016.htm
  37. Macdonald, A.M., Jardine, C.M., Rejman, E., Barta, J.R., Bowman, J. y Nemeth, N.M. (2019). High prevalence of Mycoplasma and Eimeria species in free-ranging eastern wild turkeys (Meleagris gallopavo silvestris) in Ontario, Canada. Journal of Wildlife Diseases, 55(1), 54–63. doi: https://doi.org/10.7589/2017-11-273
  38. López-Osorio, S., Chaparro-Gutiérrez, J.J. y Gómez-Osorio, L.M. (2020). Overview of Poultry Eimeria Life Cycle and Host-Parasite Interactions. Frontiers in Veterinary Science, 7. 1–8. doi: https://doi.org/10.3389/fvets.2020.00384
  39. Rotolo, J.L., Snyder, R.P., Imai, R.K., Répérant, J.M. y Barta, J.R. (2021). Description of a New Eimeria Species
  40. (Apicomplexa: Eimeriidae) Responsible for Clinical Coccidiosis in Commercial Chukar Partridge (Alectoris chukar). Journal of Parasitology, 107(4), 648–57. doi: https://doi.org/10.1645/21-17
  41. Corredor, D.J.G., Parada, O.J.S., Medellín, M.O.P. y Becerra, R.J.A. (2013). Identificación de parásitos gastrointestinales en aves silvestres en cautiverio. Revista Cientifica de la Facultad de Ciencias Veterinarias de la Universidad del Zulia, 23(3), 254-258. https://www.redalyc.org/articulo.oa?id=95926665004
  42. Chengat Prakashbabu, B., Thenmozhi, V., Limon, G., Kundu, K., Kumar, S. y Blake, D.P. (2017). Eimeria species occurrence varies between geographic regions and poultry production systems and may influence parasite genetic diversity.Veterinary Parasitology, 233, 62–72. https://www.sciencedirect.com/science/article/pii/S0304401716305040
  43. Mesa, C., Gómez-Osorio, L.M., López-Osorio, S., Williams, S.M. y Chaparro-Gutiérrez, J.J. (2021). Survey of coccidia on commercial broiler farms in Colombia: frequency of Eimeria species, anticoccidial sensitivity, and histopathology. Poultry Science, 100(8), 101239. https://www.sciencedirect.com/science/article/pii/S003257912100273X
  44. Bertram, M.R., Hamer, G.L., Snowden, K.F., Hartup, B.K. y Hamer, S.A. (2015). Coccidian Parasites and Conservation Implications for the Endangered Whooping Crane (Grus americana). PLoS ONE, 10(6), e0127679. doi: https://doi.org/10.1371/journal.pone.0127679
  45. Yabsley, M.J. y Gibbs, S.E.J. (2006). Description and phylogeny of a new species of Eimeria from Double-crested Cormorants (Phalacrocorax auritus). Journal of Parasitology, 92(2), 385–8. doi: https://doi.org/10.1645/GE-592R.1
  46. Pérez-García, J., Monsalve-Arcila, D. y Márquez-Villegas, C. (2015). Presencia de parásitos y enterobacterias en palomas ferales (Columba livia) en áreas urbanas en Envigado, Colombia. Revista Facultad Nacional de Salud Pública, 33(3), 370–376. doi. https://doi.org/10.17533/udea.rfnsp.v33n3a06
  47. Martinez-Haro, M., Sanchez-Nava, P., Salgado-Maldonado, G., and Rodriguez-Romero, F. de J. (2012). Helmintos gastrointestinales en aves acuaticas de la subcuenca alta del río Lerma, Mexico. Revista Mexicana de Biodiversidad, 83(1), 36–41. http://www.ibiologia.unam.mx
  48. Padilla-Aguilar, P., Romero-Callejas, E., Osorio-Sarabia, D., Pérez-Ponce De León, G. y Alcalá-Canto, Y. (2020). New records of helminth parasites of nine species of waterfowl in Mexico, and a checklist of the helminth fauna of Anatidae occurring in Mexican wetlands. Journal of Helminthology, 93, 1-15. doi: https://doi.org/10.1017/S0022149X20000577
  49. Paras, K., George, M. , Vidyashankar, A. y Kaplan, R. M. (2018). Comparison of fecal egg counting methods in four livestock species. Veterinary Parasitology, 257, 21–27. doi: https://doi.org/10.1016/j.vetpar.2018.05.015
  50. Laurance, S. G. W., Jones, D., Westcott, D., Mckeown, A., Harrington, G. y Hilbert, D. W. (2013). Habitat Fragmentation and Ecological Traits Influence the Prevalence of Avian Blood Parasites in a Tropical Rainforest Landscape. PLoS ONE, 8(10), e76227. doi: https://doi.org/10.1371/journal.pone.0076227