Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 16 No. 1 (2024)

Light-frame wood shear walls: A review of the state-of-the-art

DOI
https://doi.org/10.18272/aci.v16i1.3270
Submitted
February 20, 2024
Published
2024-04-15

Abstract

Due to the damage caused to timber structures during the 1994 Northridge earthquake, research focused on understanding, designing, and improving the seismic response of lightweight timber framed shear walls has experienced a remarkable growth. The main objective of this state-of-the-art review article is to synthesize the innovations and findings found during the last decade, which are detailed in research articles found in the ScienceDirect database. In order to provide a starting point to serve as a reference to explore future lines of research. The methodology indicated in the PRISMA statement has been adopted to give an adequate diagnosis of the bibliometric information found, additionally by using the VOSviewer tool bibliometric maps based on authors were made. It should be noted that aspects of fire resistance or other environmental factors have been excluded in this work. The presentation of the results is organized according to two key aspects identified in the literature: experimental studies and numerical modelling of light-framed walls.

viewed = 374 times

References

  1. Lam, F., Filiatrault, A., Kawai, N., Nakajima, S. y Yamaguchi, N. (2002). Performance of timber buildings under seismic load. Part 1: Experimental studies. Progress in Structural Engineering and Materials, 4(3), 276-285. doi: https://doi.org/10.1002/pse.121
  2. Estrella, X., Guindos, P., Almazán, J. L. y Malek, S. (2020). Efficient nonlinear modeling of strong wood frame shear walls for mid-rise buildings. Engineering Structures, 215, 110670–110670. doi: https://doi.org/10.1016/j.engstruct.2020.110670
  3. Orellana, P., Santa María, H., Almazán, J. L. y Estrella, X. (2021). Cyclic behavior of wood-frame shear walls with vertical load and bending moment for mid-rise timber buildings. Engineering Structures, 240, 112298–112298. doi: https://doi.org/10.1016/j.engstruct.2021.112298
  4. Bagheri, M. M. y Doudak, G. (2020). Structural characteristics of light-frame wood shear walls with various construction detailing. Engineering Structures, 205, 110093–110093. doi: https://doi.org/10.1016/j.engstruct.2019.110093
  5. Guíñez, F., Santa María, H. y Almazán, J. L. (2019). Monotonic and cyclic behaviour of wood frame shear walls for midheight timber buildings. Engineering Structures, 189, 100–110. doi: https://doi.org/10.1016/j.engstruct.2019.03.043
  6. Lebeda, D. J., Gupta, R., Rosowsky, D. V. y Dolan, J. D. (2005). Effect of Hold-Down Misplacement on Strength and Stiffness of Wood Shear Walls. Practice Periodical on Structural Design and Construction, 10(2), 79–87. doi: https://doi.org/10.1061/(ASCE)1084-0680(2005)10:2(79)
  7. Bagheri, M. M. y Doudak, G. (2021). Experimental and numerical study on the deflection of multi-storey light-frame timber shear walls. Engineering Structures, 233, 111951–111951. doi: https://doi.org/10.1016/j.engstruct.2021.111951
  8. Salinas-Ríos, K. y Janneire García-López, A. (2022). Bibliometrics, a useful tool within the field of research Bibliometría, una herramienta útil dentro del campo de la investigación. Journal of Basic and Applied Psychology Research Biannual Publication, 3(6), 10–17. https://repository.uaeh.edu.mx/revistas/index.php/jbapr/issue/archive
  9. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E. y Herrera, F. (2011). Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402. doi: https://doi.org/10.1002/ASI.21525
  10. Yepes-Nuñez, J. J., Urrútia, G., Romero-García, M. y Alonso-Fernández, S. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790–799. doi: https://doi.org/10.1016/J.RECESP.2021.06.016
  11. Saini, D. y Shafei, B. (2020). Damage assessment of wood frame shear walls subjected to lateral wind load and windborne debris impact. Journal of Wind Engineering and Industrial Aerodynamics, 198, 104091–104091. doi: https://doi.org/10.1016/j.jweia.2020.104091
  12. Alam, M. S., Barbosa, A. R., Mugabo, I., Cox, D. T., Park, H., Lee, D. y Shin, S. (2023). Elevated light-frame wood residential building physical and numerical modeling of damage due to hurricane overland surge and waves. Engineering Structures, 294, 116774–116774. doi: https://doi.org/10.1016/j.engstruct.2023.116774
  13. Schick, M. y Seim, W. (2019). Overstrength values for light frame timber wall elements based on reliability methods. Engineering Structures, 185, 230–242. doi: https://doi.org/10.1016/j.engstruct.2019.01.034
  14. Pan, Y., Ventura, C. E. y Tannert, T. (2020). Damage index fragility assessment of low-rise light-frame wood buildings under long duration subduction earthquakes. Structural Safety, 84, 101940–101940. doi: https://doi.org/10.1016/j.strusafe.2020.101940
  15. Inoue, R., Mori, T. y Matsumoto, S. (2023). Effect of numerous small deformations caused by moderate earthquakes on shear performance of wooden walls. Construction and Building Materials, 364, 130016–130016. doi: https://doi.org/10.1016/j.conbuildmat.2022.130016
  16. Wakashima, Y., Ishikawa, K., Shimizu, H., Kitamori, A., Matsubara, D. y Tesfamariam, S. (2021). Dynamic and long-term performance of wood friction connectors for timber shear walls. Engineering Structures, 241, 112351–112351. doi: https://doi.org/10.1016/j.engstruct.2021.112351
  17. Casagrande, D., Rossi, S., Sartori, T. y Tomasi, R. (2016). Proposal of an analytical procedure and a simplified numerical model for elastic response of single-storey timber shear-walls. Construction and Building Materials, 102, 1101–1112. doi: https://doi.org/10.1016/J.CONBUILDMAT.2014.12.114
  18. Caprolu, G., Girhammar, U. A. y Källsner, B. (2015). Comparison of models and tests on bottom rails in timber frame shear walls experiencing uplift. Construction and Building Materials, 94, 148–163. doi: https://doi.org/10.1016/J.CONBUILDMAT.2015.05.125
  19. Anil, Ö., Togay, A., Karagöz Işleyen, Ü., Sö ütlü, C. y Döngel, N. (2016). Hysteretic behavior of timber framed shear wall with openings. Construction and Building Materials, 116, 203–215. doi: https://doi.org/10.1016/J.CONBUILDMAT.2016.04.068
  20. Sadeghi Marzaleh, A., Nerbano, S., Sebastiani Croce, A. y Steiger, R. (2018). OSB sheathed light-frame timber shear walls with strong anchorage subjected to vertical load, bending moment, and monotonic lateral load. Engineering Structures, 173, 787–799. doi: https://doi.org/10.1016/j.engstruct.2018.05.044
  21. Shadravan, S. y Ramseyer, C. C. (2018). Investigation of Wood Shear Walls Subjected to Lateral Load. Structures, 16, 82–96. doi: https://doi.org/10.1016/j.istruc.2018.08.007
  22. American Wood Council. (2015). Special design provisions for wind and seismic. American Wood Council.
  23. Instituto Nacional de Normalización. (2009). NCh 433. Of96: Diseño Sísmico de Edificios. Norma Chilena Oficial.
  24. Estrella, X., Malek, S., Almazán, J. L., Guindos, P. y Santa María, H. (2021). Experimental study of the effects of continuous rod hold-down anchorages on the cyclic response of wood frame shear walls. Engineering Structures, 230, 111641–111641. doi: https://doi.org/10.1016/j.engstruct.2020.111641
  25. Qiang, R., Zhou, L., Ni, C. y Huang, D. (2022). Seismic performance of high-capacity light wood frame shear walls with three rows of nails. Engineering Structures, 268, 114767–114767. doi: https://doi.org/10.1016/j.engstruct.2022.114767
  26. American Society for Testing and Materials. (2018). ASTM D 7987: Standard Practice for Demonstrating Equivalent In-Plane Lateral Seismic Performance to Wood-Frame Shear Walls Sheathed with Wood Structural Panels. ATSM International.
  27. Verdret, Y., Faye, C., Elachachi, S. M., Le Magorou, L. y García, P. (2015). Experimental investigation on stapled and nailed connections in light timber frame walls. Construction and Building Materials, 91, 260–273. doi: https://doi.org/10.1016/j.conbuildmat.2015.05.052
  28. European Committee for Standardization. (2004). EN1995 Eurocode 5. Design of timber structures, 144(6).
  29. American Society for Testing and Materials. (2008). ASTM E 2126: Standard test method for cyclic load test for shear resistance of vertical elements of the lateral force resisting systems for building. American Society for Testing and Materials
  30. Germano, F., Metelli, G. y Giuriani, E. (2015). Experimental results on the role of sheathing-to-frame and base connections of a European timber framed shear wall. Construction and Building Materials, 80, 315–328. doi: https://doi.org/10.1016/j.conbuildmat.2015.01.076
  31. Zheng, W., Li, Y., Zhou, Y., Zhu, Y., Lu, W., Liu, W. y Wang, H. (2020). Experimental investigation on the behavior of plybamboo sheathing-to-framing screwed connections. Construction and Building Materials, 262, 120856–120856. doi: https://doi.org/10.1016/j.conbuildmat.2020.120856
  32. Echeverry, J. S. y Correal, J. F. (2015). Cyclic behavior of Laminated Guadua Mat sheathing-to-framing connections. Construction and Building Materials, 98, 69–79. Doi: https://doi.org/10.1016/j.conbuildmat.2015.08.109
  33. Folz, B., Filiatrault, A., Project, S. S. R. y University of California, S. Diego. D. of S. E. (2000). CASHEW: A Computer Program for the Cyclic Analysis of Shear Walls. Department of Structural Engineering. University of California. https://books.google.com.ec/books?id=jv1DAQAAIAAJ
  34. Nguyen, T. T., Dao, T. N., Aaleti, S., van de Lindt, J. W. y Fridley, K. J. (2018). Seismic assessment of a three-story wood building with an integrated CLT-lightframe system using RTHS. Engineering Structures, 167, 695–704. doi: https://doi.org/10.1016/j.engstruct.2018.01.025
  35. Yue, K., Liang, B., Shao, Y., Xie, C., Hu, W., Zhao, M., Chen, Z. y Lu, W. (2021). Lateral behavior of wood frame shear walls sheathed with densified plywood under monotonic loading. Thin-Walled Structures, 166, 108082–108082. doi: https://doi.org/10.1016/j.tws.2021.108082
  36. Casagrande, D., Rossi, S., Tomasi, R. y Mischi, G. (2016). A predictive analytical model for the elasto-plastic behaviour of a light timber-frame shear-wall. Construction and Building Materials, 102, 1113–1126. doi: https://doi.org/10.1016/j.conbuildmat.2015.06.025
  37. Valdivieso, D., Guindos, P., Montaño, J. y Lopez-Garcia, D. (2023). Experimental investigation of multi-layered strong wood-frame shear walls with nonstructural Type X gypsum wallboard layers under cyclic load. Engineering Structures, 282, 115797–115797. doi: https://doi.org/10.1016/j.engstruct.2023.115797
  38. Humbert, J., Boudaud, C., Baroth, J., Hameury, S. y Daudeville, L. (2014). Joints and wood shear walls modelling I: Constitutive law, experimental tests and FE model under quasi-static loading. Engineering Structures, 65, 52–61. doi: https://doi.org/10.1016/j.engstruct.2014.01.047
  39. Boudaud, C., Humbert, J., Baroth, J., Hameury, S. y Daudeville, L. (2015). Joints and wood shear walls modelling II: Experimental tests and FE models under seismic loading. Engineering Structures, 101, 743–749. doi: https://doi.org/10.1016/j.engstruct.2014.10.053
  40. Peng, C., El Damatty, A. A., Musa, A. y Hamada, A. (2020). Simplified numerical approach for the lateral load analysis of light-frame wood shear wall structures. Engineering Structures, 219, 110921–110921. doi: https://doi.org/10.1016/j.engstruct.2020.110921
  41. Folz, B. y Filiatrault, A. (2001). Cyclic Analysis of Wood Shear Walls. Journal of Structural Engineering, 127(4), 433–441. doi: https://doi.org/10.1061/(ASCE)0733-9445(2001)127:4(433)
  42. Kuai, L., Ormarsson, S. y Vessby, J. (2023). Nonlinear FE-analysis and testing of light-frame timber shear walls subjected to cyclic loading. Construction and Building Materials, 362, 129646–129646. doi: https://doi.org/10.1016/j.conbuildmat.2022.129646
  43. Kuai, L., Ormarsson, S., Vessby, J. y Maharjan, R. (2022). A numerical and experimental investigation of non-linear deformation behaviours in light-frame timber walls. Engineering Structures, 252, 113599–113599. doi: https://doi.org/10.1016/J.ENGSTRUCT.2021.113599
  44. Dunton, A. y Gardoni, P. (2023). Physics-based probabilistic capacity models and fragility estimates for light wood frame shear walls. Engineering Structures, 285, 115966–115966. doi: https://doi.org/10.1016/j.engstruct.2023.115966
  45. Jensen, J. L., Caprolu, G. y Girhammar, U. A. (2016). Fracture Mechanics Models for Brittle Failure of Bottom Rails due to Uplift in Timber Frame Shear Walls. Advances in Civil Engineering, 2016. doi: https://doi.org/10.1155/2016/9402650
  46. Caprolu, G., Girhammar, U. A. y Källsner, B. (2017). Analytical models for splitting capacity of bottom rails in partially anchored timber frame shear walls based on fracture mechanics. Wood Material Science & Engineering, 12(3), 165–188. doi: https://doi.org/10.1080/17480272.2015.1075228
  47. Caprolu, G., Girhammar, U. A., Källsner, B. y Lidelöw, H. (2014). Splitting capacity of bottom rail in partially anchored timber frame shear walls with single-sided sheathing. The IES Journal Part A: Civil & Structural Engineering, 7(2), 83–105. doi: https://doi.org/10.1080/19373260.2014.898558
  48. Caprolu, G., Girhammar, U. A. y Källsner, B. (2015). Splitting capacity of bottom rails in partially anchored timber frame shear walls with double-sided sheathing. The IES Journal Part A: Civil & Structural Engineering, 8(1), 1–23. doi: https://doi.org/10.1080/19373260.2014.952607
  49. Estrella, X., Guindos, P., Almazán, J. L., Malek, S., Santa María, H., Montaño, J. y Berwart, S. (2021). Seismic performance factors for timber buildings with woodframe shear walls. Engineering Structures, 248, 113185–113185. doi: https://doi.org/10.1016/j.engstruct.2021.113185
  50. Berwart, S., Estrella, X., Montaño, J., Santa-María, H., Almazán, J. L. y Guindos, P. (2022). A simplified approach to assess the technical prefeasibility of multistory wood-frame buildings in high seismic zones. Engineering Structures, 257, 114035–114035. doi: https://doi.org/10.1016/j.engstruct.2022.114035