Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 15 No. 1 (2023)

Design of a lignocellulosic waste conversion route for the production of butane as a substitute for liquefied petroleum gas

DOI
https://doi.org/10.18272/aci.v15i1.2884
Submitted
January 15, 2023
Published
2023-05-16

Abstract

Liquefied petroleum gas (LPG) is essential, mainly for domestic use, representing 10.4% of Ecuador's energy demand. In the absence of mechanisms for the valorization of lignocellulosic waste in the country, a biomass-to-butane conversion route was proposed as a substitute for LPG through a computational design to evaluate its technical, economic and environmental feasibility. The optimal waste for the process was selected based on the annual generation rate and physical-chemical composition. The route configuration was designed in AspenPlus® with an input of 77 t/h biomass. Based on the results, an economic and life cycle analysis was carried out using the openLCA® software. Butane production reached seven tons per hour and an energy density of 26.7 MJ/L.

Regarding the economic axis, the minimum sale price calculated was $1.03/kg, considering the sale of lignin as a co-product. In this way, the biofuel was competitive with the sale price of one dollar per kilogram of LPG. Finally, the total carbon footprint of the process was 102 g CO2-eq/MJ, higher than the European standard of 94 g CO2-eq/MJ. This research opens the door towards optimizing resources and transforming the country's energy matrix.

viewed = 515 times

References

  1. Ryskamp, R. (2017). Emissions and Performance of Liquefied Petroleum Gas as a Transportation Fuel: A Review. Recuperado de https://auto-gas.net/wp-content/uploads/2019/11/2017-WLPGA-Literature-Review.pdf
  2. Troncoso, K., & Soares, A. (2017). LPG fuel subsidies in Latin America and the use of solid fuels to cook. Energy Policy, 107(January), 188–196. https://doi.org/10.1016/j.enpol.2017.04.046
  3. WLPGA, & Argus. (n/f). Latin America 2020 WLPGA.
  4. Ministerio de Energía y Minas. (2021a). Balance Energético Nacional 2021.
  5. Banco Central del Ecuador. (2012). Reporte Del Sector Petrolero. In Banco Central del Ecuador. Recuperado de https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ASP201606.pdf
  6. Banco Central del Ecuador. (n/f). Informe de la evolución de la economía ecuatoriana en 2021 y perspectivas 2022. Recuperado de https://contenido.bce.fin.ec/documentos/Administracion/EvolEconEcu_2021pers2022.pdf
  7. Márquez, J. (2021). Boletin Técnico: Encuesta de Superficie y Producción Agropecuaria Continua, 2020. Recuperado de https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2020/Boletin%20Tecnico%20ESPAC%202020.pdf
  8. Loor, M. C., Andrade, F., Lizarzaburu, L., & Masache, M. (2017). Valoración económica de los cobeneficios del aprovechamiento energético de los residuos agrícolas en el Ecuador. Recuperado de https://www.cepal.org/es/publicaciones/41830-valoracion-economica-cobeneficios-aprovechamiento-energetico-residuos-agricolas
  9. Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739. https://doi.org/10.1016/j.scitotenv.2020.139755
  10. Singh, R., Das, R., Sangwan, S., Rohatgi, B., Khanam, R., Peera, S. K. P. G., Das, S., Lyngdoh, Y. A., Langyan, S., Shukla, A., Shrivastava, M., & Misra, S. (2021). Utilisation of agro-industrial waste for sustainable green production: a review. Environmental Sustainability, 4(4), 619–636. https://doi.org/10.1007/s42398-021-00200-x
  11. The Global LPG Partnership. (2020). Assessing Potential for BioLPG Production and Use within the Cooking Energy Sector in Africa. Global LPG Partnership, September. Recuperado de https://mecs.org.uk/wp-content/uploads/2020/09/GLPGP-Potential-for-BioLPG-Production-and-Use-as-Clean-Cooking-Energy-in-Africa-2020.pdf
  12. Johnson, E. (2019a). Process technologies and projects for BiOLPG. In Energies (Vol. 12, Issue 2). MDPI AG. https://doi.org/10.3390/en12020250
  13. Teimouri, Z., Abatzoglou, N., & Dalai, A. K. (2021). Kinetics and selectivity study of fischer-tropsch synthesis to c5+ hydrocarbons: A review. Catalysts, 11(3), 19–31. https://doi.org/10.3390/catal11030330
  14. Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., & Lu, Q. (2020). Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. In Renewable and Sustainable Energy Reviews (Vol. 134). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110305
  15. Costa, M., Piazzullo, D., Di, D., & Vita, A. De. (2022). Sustainability assessment of the whole biomass-to-energy chain of a combined heat and power plant based on biomass gasification : biomass supply chain management and life cycle assessment. Journal of Environmental Management, 317, 115434. https://doi.org/10.1016/j.jenvman.2022.115434
  16. Vela-garcía, N., Bolonio, D., García-martínez, M., Ortega, M. F., Almeida, D., & Canoira, L. (2021). Biojet fuel production from oleaginous crop residues : thermoeconomic , life cycle and flight performance analysis. Energy Conversion and Management, 244, 114534. https://doi.org/10.1016/j.enconman.2021.114534
  17. Onwudili, J. A., & Nouwe Edou, D. J. (2022). Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock. Renewable Energy, 184, 80–90. https://doi.org/10.1016/j.renene.2021.11.043
  18. Retto-Hernandez, P., Rojas, M. L., Lescano, L., Sanchez-Gonzalez, J., & Linares, G. (2020a). Lignocellulosic agroindustrial waste in Peru: Potential for bioethanol, energy, and reduction of CO2 emission. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.463
  19. Vandenberghe, L. P. de S., Junior, N. L., Valladares-Diestra, K. K., Bittencourt, G. A., Murawski de Mello, A. F., Karp, S. G., Junior Letti, L. A., & Soccol, C. R. (2022). Nonwaste technology in the bioethanol and biodiesel industries. Biofuels and Bioenergy, 41–60. https://doi.org/10.1016/B978-0-323-85269-2.00019-8
  20. Arce, C., & Kratky, L. (2022). Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. IScience, 25(104610), 1–8. https://doi.org/10.1016/j.isci
  21. Shimizu, F. L., Monteiro, P. Q., Ghiraldi, P. H. C., Melati, R. B., Pagnocca, F. C., Souza, W. de, Sant’Anna, C., & Brienzo, M. (2018). Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115, 62–68. https://doi.org/10.1016/j.indcrop.2018.02.024
  22. Pfromm, P. (2008). The Minimum Water Consumption of Ethanol Production via Biomass Fermentation. The Open Chemical Engineering Journal, 2(2). DOI: 10.2174/1874123100802010001
  23. de Souza, E. L., Sellin, N., Marangoni, C., & Souza, O. (2017). The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production. Applied Biochemistry and Biotechnology, 183(3), 943–965. https://doi.org/10.1007/s12010-017-2475-7
  24. Souza, E. L., Liebl, G. F., Marangoni, C., Sellin, N., Montagnoli, M. S., & Souza, O. (2014). Bioethanol from fresh and dried banana plant pseudostem. Chemical Engineering Transactions, 38, 271–276. https://doi.org/10.3303/CET1438046
  25. Shoji, T., Kawamoto, H., & Saka, S. (2014). Boiling point of levoglucosan and devolatilization temperatures in cellulose pyrolysis measured at different heating area temperatures. Journal of Analytical and Applied Pyrolysis, 109, 185–195. https://doi.org/10.1016/j.jaap.2014.06.014
  26. Wang, J., Shen, X., Lin, Y., Chen, Z., Yang, Y., Yuan, Q., & Yan, Y. (2018). Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production of Glutaric Acid. ACS Synthetic Biology, 7(1), 24–29. https://doi.org/10.1021/acssynbio.7b00271
  27. Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by saccharomyces cerevisiae: Challenges and prospects. In International Journal of Molecular Sciences, 17(3). MDPI AG. https://doi.org/10.3390/ijms17030207
  28. Nosrati-Ghods, N., Harrison, S. T. L., Isafiade, A. J., & Tai, S. L. (2020). Analysis of ethanol production from xylose using Pichia stipitis in microaerobic conditions through experimental observations and kinetic modelling. Biochemical Engineering Journal, 164. https://doi.org/10.1016/j.bej.2020.107754
  29. Silva, J. P. A., Mussatto, S. I., Roberto, I. C., & Teixeira, J. A. (2011). Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank biorreactor. Brazilian Journal of Chemical Engineering, 28(1), 151–156. www.abeq.org.br/bjche
  30. Gil, I. D., Uyazán, A. M., Aguilar, J. L., Rodríguez, G., & Caicedo, L. A. (2008). SEPARATION OF ETHANOL AND WATER BY EXTRACTIVE DISTILLATION WITH SALT AND SOLVENT AS ENTRAINER: PROCESS SIMULATION. Brazilian Journal of Chemical Engineering, 25(01), 207–215. https://doi.org/10.1590/S0104-66322008000100021
  31. Junqueira, T. L., Filho, R. M., & Maciel, M. R. W. (2009). Simulation of distillation process in the bioethanol production using nonequilibrium stage model. In Computer Aided Chemical Engineering 27(C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70343-8
  32. Li, G., & Bai, P. (2012). New operation strategy for separation of ethanol-water by extractive distillation. Industrial and Engineering Chemistry Research, 51(6), 2723–2729. https://doi.org/10.1021/ie2026579
  33. Frosi, M., Tripodi, A., Conte, F., Ramis, G., Mahinpey, N., & Rossetti, I. (2021a). Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. Journal of Industrial and Engineering Chemistry, 104, 272–285. https://doi.org/10.1016/j.jiec.2021.08.026
  34. Becerra, J., Quiroga, E., Tello, E., Figueredo, M., & Cobo, M. (2018). Kinetic modeling of polymer-grade ethylene production by diluted ethanol dehydration over H-ZSM-5 for industrial design. Journal of Environmental Chemical Engineering, 6(5), 6165–6174. https://doi.org/10.1016/j.jece.2018.09.035
  35. ACS Material. (n/f). Technical Data Sheet Series Zeolite Powder. Recuperado de https://www.acsmaterial.com/zsm-5-series-zeolite-powder.html
  36. Frosi, M., Tripodi, A., Conte, F., Ramis, G., Mahinpey, N., & Rossetti, I. (2021b). Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. Journal of Industrial and Engineering Chemistry, 104, 272–285. https://doi.org/10.1016/j.jiec.2021.08.026
  37. Al-Faze, R., Kozhevnikova, E. F., & Kozhevnikov, I. v. (2021). Diethyl Ether Conversion to Ethene and Ethanol Catalyzed by Heteropoly Acids. ACS Omega, 6(13), 9310–9318. https://doi.org/10.1021/acsomega.1c00958
  38. Palomino Infante, A. (2004). Análisis Pinch y su contribución a la integración de procesos. Revista de la Sociedad Química del Perú, 70(3), 167–174. Recuperado de https://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/rsqp/n3_2004/a06.pdf
  39. Rossi, C. (2021). Análisis PINCH: Herramienta práctica para la eficiencia térmica en procesos, reducción de costos e impacto ambiental. Recuperado de https://www.cecacier.org/wp-content/uploads/2021/07/Analisis-Pinch-24-6-2021-CRS.pdf
  40. Mohammadzade Fard, S., Farsi, M., & Rahimpour, M. R. (2021). Optimization of ethylene dimerization in a bubble column reactor based on coupling kinetic and equilibrium models. Chemical Engineering Research and Design, 174, 357–364. https://doi.org/10.1016/j.cherd.2021.07.030
  41. Belov, G. P. (2008). Selective dimerization, oligomerization, homopolymerization and copolymerization of olefins with complex organometallic catalysts. In Russian Journal of Applied Chemistry, 81(9), 1655–1666). https://doi.org/10.1134/S107042720809036X
  42. Hamed, S., Soudbar, D., & Pavari, M. (2010). Selective Ethylene Dimerization Toward 1-butene by a New Highly Efficient Catalyst System and Determination of Its Optimum Operating Conditions in a Buchi Reactor. International Journal of Chemical Engineering and Applications, 1(3), 276–281. doi 10.7763/ijcea.2010.v1.48
  43. Ristovic, M., & Pacolli, M. (2017). Oligomerization of Ethylene and Ethanol into Fuel Through Heterogeneous Catalysis. Lund University. Recuperado de https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8916580&fileOId=8916582
  44. Kwantlen Polytechnic University. (n/f). Reaction of Alkenes: Hydrogenation. Recuperado de https://kpu.pressbooks.pub/organicchemistry/chapter/10-5-reaction-of-alkenes-hydrogenation/#
  45. Akchurin, T. I., Baibulatova, N. Z., Grabovskii, S. A., Talipova, P. P., Galkin, E. G., & Dokichev, V. A. (2016). Alkene hydrogenation over palladium supported on a carbon–silica material. Kinetics and Catalysis, 57(5), 586–591. https://doi.org/10.1134/S0023158416050025
  46. Tianlong. (n/f). LPG Cylinder. Recuperado de https://www.alibaba.com/product-detail/Lpg- Cylinder-Hot-Quality-12-5kg_62455310881.html?spm=a2700.galleryofferlist.normal_offer.d_image.c96d26e099dlRc&s=p
  47. Economic Indicators. (2014, marzo). Chemical Engineering. Recuperado de www.che.com/pci
  48. Guthrie, K. M. (1969). Capital Cost Estimating. Chemical Engineering. 114-142.
  49. Mignard, D. (2014). Correlating the chemical engineering plant cost index with macro-economic indicators. Chemical Engineering Research and Design, 92(2), 285–294. https://doi.org/10.1016/j.cherd.2013.07.022
  50. Cheali, P., Gernaey, K. v., & Sin, G. (2015). Uncertainties in early-stage capital cost estimation of process design - A case study on biorefinery design. Frontiers in Energy Research, 3(FEB). https://doi.org/10.3389/fenrg.2015.00003
  51. Office of Energy Efficiency & Renewable Energy. (n/f.). Bioenergy Career Grid. Recuperado de https://www.energy.gov/eere/bioenergy/bioenergy-career-grid
  52. Zhang, Y., Goldberg, M., Tan, E., & Meyer, P. A. (2016). Estimation of economic impacts of cellulosic biofuel production: A comparative analysis of three biofuel pathways. Biofuels, Bioproducts and Biorefining, 10(3), 281–298. https://doi.org/10.1002/bbb.1637
  53. Bureau of Labor Statistics. (2021). May 2021 OEWS Research Estimates. In Nursing Research 16(1). Recuperado de https://www.bls.gov/oes/2021/may/oes_research_estimates.htm
  54. Vianey, J. (2018). Aportes teóricos sobre el flujo de caja. https://doi.org/10.13140/RG.2.2.29021.72166
  55. Lindorfer, J., Rosenfeld, D., Annevelink, B., & Mandl, M. (2019, junio). Technical, Economic and Environmental Assessment of Biorefinery Concepts Developing a practical approach for characterization. IEA Bioenergy. Recuperado de https://www.ieabioenergy.com/blog/publications/new-publication-technical-economic-and-environmental-assessment-of-biorefinery-concepts-developing-a-practical-approach-for-characterisation/
  56. GreenDelta. (2022). openLCA modeling suite. Recuperado de https://www.openlca.org/openlca/
  57. Li, M., & Subramaniam, B. (2017). LCA for Green Chemical Synthesis Terephthalic Acid. Encyclopedia of Sustainable Technologies, 387–396. https://doi.org/10.1016/B978-0-12-409548-9.10086-7
  58. Neves, T. I., Uyeda, C. A., Carvalho, M., & Abrahão, R. (2018). Environmental evaluation of the life cycle of elephant grass fertilization — Cenchrus purpureus (Schumach.) Morrone — using chemical fertilization and biosolids. https://doi.org/10.1007/s10661-017-6406-4
  59. Estrella, L. H. (2021). Factor de emisión de CO2 del Sistema Nacional Interconectado - Informe 2020. 40. Recuperado de https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/11/factor_de_emision_de_co2_del_sistema_nacional_interconectado_de_ecuador_-_informe_2019.pdf
  60. Mcallister, S., & Processes, C. (2011). Properties of Fuels. https://doi.org/10.1007/978-1-4419-7943-8
  61. Johnson, E. (2019b). Process technologies and projects for BiOLPG. Energies 12(2). https://doi.org/10.3390/en12020250
  62. Europe Liquid Gas. (2021). BIOLPG A Renewable Pathway towards 2050.
  63. Hopwood, L., Mitchell, E., & Sourmelis, S. (2019). Biopropane: Feedstocks, Feasibility and our Future Pathway. Recuperado de www.nnfcc.co.uk
  64. Suhag, M., Kumar, A., & Singh, J. (2020). Saccharification and fermentation of pretreated banana leaf waste for ethanol production. SN Applied Sciences, 2(8), 1–9. https://doi.org/10.1007/s42452-020-03215-x
  65. Young, S., & Fortey, E. (1902). The Propierties of Mixtures of the Lower Alcohols with Benzene and with Benzene and Water. Journal of the Chemical Society, 81, 739–752. https://doi.org/10.1039/CT9028100739
  66. IARC. (2017). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS: BENZENE. 120. Recuperado de https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Benzene-2018
  67. Koczka, K., Mizsey, P., & Fonyo, Z. (2007). Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Central European Journal of Chemistry, 5(4), 1124–1147. https://doi.org/10.2478/s11532-007-0050-8
  68. Eweremadu, C., & Rutto, H. (2010). Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump. International Journal of Chemical and Molecular Engineering, 4(9), 548–549. scholar.waset.org/1307-6892/1577
  69. Kiss, A. A., & Smith, R. (2020). Rethinking energy use in distillation processes for a more sustainable chemical industry. Energy, 203. https://doi.org/10.1016/j.energy.2020.117788
  70. NETZSH. (2014). Thermal Insulation Materials. Analysing & Testing. www.netzsch.com
  71. La Hora. (2021, agosto 04). El subsidio por tanque de gas supera los $13. La Hora. Recuperado de https://www.lahora.com.ec/pais/el-subsidio-por-tanque-de-gas-supera-los-13/
  72. Gueddari-Aourir, A., García-Alaminos, A., García-Yuste, S., Alonso-Moreno, C., Canales-Vázquez, J., & Zafrilla, J. E. (2022). The carbon footprint balance of a real-case wine fermentation CO2 capture and utilization strategy. Renewable and Sustainable Energy Reviews, 157. https://doi.org/10.1016/j.rser.2021.112058
  73. Mir, A., Tabar, M., & Fakhr, S. E. (2019). Greenhouse Gas Emission Estimation by Life Cycle Assessment Approach in Petrochemical Industry. https://www.researchgate.net/publication/337227174
  74. Edwards, R., O’Connell, A., Padella, M., Giuntoli, J., Koeble, R., Bulgheroni, C., Marelli, L., & Lonza, L. (2019). Definition of input data to assess GHG default emissions from biofuels in EU legislation. https://doi.org/10.2760/69179
  75. Peng, P., Lan, Y., Liang, L., & Jia, K. (2021). Membranes for bioethanol production by pervaporation. Biotechnology for Biofuels, 14(1), 1–33. https://doi.org/10.1186/s13068-020-01857-y