Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 15 No. 1 (2023)

Reaction to fire of solid wood of Pinus pseudostrobus and of slatted boards, plywood, medium-density fiberboards and oriented strand boards: Comparative study of ignition time and mass loss

DOI
https://doi.org/10.18272/aci.v15i1.2837
Submitted
October 25, 2022
Published
2023-05-16

Abstract

Wood and wood boards that are part of the structure and/or furniture of buildings, in case of fire, contribute to the spread of fire. The objective of the research was to determine the ignition time and mass loss based on indicative fire reaction tests on Pinuspseudostrobus specimens, slatted boards, plywood, medium density fiberboard and oriented strand boards. 35 small specimens of each material were prepared and their moisture content and density were calculated. Fire reaction tests were carried out and the ignition time and mass loss were determined. Density increases in the following order: slatted boards, plywood, P. pseudostrobus, medium density fiberboard, and oriented strand board. It was concluded that comparatively, the ignition time of the slatted and medium density are similar and the shortest; the time corresponding to plywood is close to that of P. pseudostrobus wood; and the ignition time of oriented chip board is the longest. The mass loss of P. pseudostrobus wood is lower compared to that of plywood and oriented chip boards. The mass loss of medium density fiberboard and slatted boards is higher and similar to each other. For the four wooden boards studied, as their ignition time increases, their mass loss decreases.

viewed = 333 times

References

  1. Grexa, O., & Lübke, H. (2001). Flammability parameters of wood tested on a cone calorimeter. Polymer Degradation and Stability, 74, 427–432. doi: https://doi.org/10.1016/S0141-3910(01)00181-1
  2. Östman, B. A. L. (2017). Fire performance of wood products and timber structures. International Wood Products Journal, 8(2), 74–79. doi: https://doi.org/10.1080/20426445.2017.1320851
  3. Chorlton, B., & Gales, J. (2019). Fire performance of cultural heritage and contemporary timbers. Engineering Structures, 201, 109739. doi: https://doi.org/10.1016/j.engstruct.2019.109739
  4. Lowden L. A., & Hull, T. R. (2013). Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2, 4. doi: https://doi.org/10.1186/2193-0414-2-4
  5. Popescu, C. M., & Pfriem, A. (2020). Treatments and modification to improve the reaction to fire of wood and wood based products. An overview. Fire and Materials, 44, 100–111. doi: https://doi.org/10.1002/fam.2779
  6. Kuznetsov, V. T., & Fil’kov, A. I. (2011). Ignition of Various Wood Species by Radiant Energy. Combustion, Explosion, and Shock Waves, 47(1), 65–69. doi: https://doi.org/10.1134/S0010508211010096
  7. Emberley, R., Do, T., Yim, J., & Torero, J. L. (2017). Critical heat flux and mass loss rate for extinction of flaming combustion of timber. Fire Safety Journal, 91, 252–258. doi: http://dx.doi.org/10.1016/j.firesaf.2017.03.008
  8. Zhaia, C., Gong, J., Zhou, X., Peng, F., & Yang, L. (2017). Pyrolysis and spontaneous ignition of wood under time-dependent heat flux. Journal of Analytical and Applied Pyrolysis, 125, 100–108. doi: http://dx.doi.org/10.1016/j.jaap.2017.04.013
  9. Rebollar, M., Pérez, R., & Vidal, R. (2007). Comparison between oriented strand boards and other wood-based panels for the manufacture of furniture. Materials and Design, 28, 882–888. doi: http://dx.doi.org/10.1016/j.matdes.2005.10.012
  10. Ye, H., Wang, Y., Yu, Q., Ge, S., Fan, W., Zhang, M., Huang, Z., Manzo, M., Cai, L., Wang, L., & Xia, C. (2022). Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere, 287, 132436. doi: https://doi.org/10.1016/j.chemosphere.2021.132436
  11. Aicher, A., Reinhardt, H. W., & Garrecht, H. (Eds.) (2014). Materials and Joints in Timber Structures. Dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-7811-5
  12. Borgström, E. (2016). Design of timber structures. Structural aspects of timber construction. Volume 1. Stockholm: Swedish Forest Industries Federation. Swedish Wood. Recuperado de: https://www.swedishwood.com/siteassets/5-publikationer/pdfer/design-of-timber-structures-1-2016.pdf
  13. Jacob, M., Harrington, J., & Robinson, B. (2018). The Structural Use of Timber - Handbook for Eurocode 5: Part 1-1. Dublin: COFORD, Department of Agriculture, Food and the Marine. Recuperado de: http://www.coford.ie/media/coford/content/publications/TimberHandbook5Part130418.pdf
  14. Osvaldova, L. M., Markert, F., & Zelinka, S. L. (Eds.). (2020). Wood & Fire Safety. Cham: Springer. doi: https://doi.org/10.1007/978-3-030-41235-7
  15. Fu, F. (2021). Fire Safety Design for Tall Buildings. Florida: CRC Press.
  16. Aseeva, R., Serkov, B., & Sivenkov, A. (2014). Fire Behavior and Fire Protection in Timber Buildings. Dordrecht: Springer. doi: https://doi.org/10.1007/978-94-007-7460-5
  17. The Engineered Wood Association. (2019). Engineered Wood. Construction Guide. Tacoma: APA-The Engineered Wood Association. Recuperado de: https://www.apawood.org/
  18. Forest Products Laboratory. (2021). Wood handbook—wood as an engineering material. General Technical Report FPL-GTR-282. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Recuperado de: https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr282/fpl_gtr282.pdf
  19. Ali, S., Hussain, S. S., & Tohir, M. Z. M. (2019). Fire Test and Effects of Fire Retardant on the Natural Ability of Timber: A Review. Pertanika Journal of Science & Technology, 27(2), 867–895. Recuperado de: http://www.pertanika2.upm.edu.my/resources/files/Pertanika%20PAPERS/JST%20Vol.%2027%20(2)%20Apr.%202019/21.%20JST%201210-2018.pdf
  20. Bartlett, A. I., Hadden, R. M., & Bisby, L. A. (2018). A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction. Fire Technology, 55, 1–49. doi: https://doi.org/10.1007/s10694-018-0787-y
  21. Schmid, J., Klippel, M., Just, A., & Frangi, A. (2014). Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the Reduced Cross-Section Method. Fire Safety Journal, 68, 81–99. doi: https://doi.org/10.1016/j.firesaf.2014.05.006
  22. Östman, B., Brandon, D., & Frantzich, H. (2017). Fire safety engineering in timber buildings. Fire Safety Journal, 91, 11–20. doi: http://dx.doi.org/10.1016/j.firesaf.2017.05.002
  23. Renner, J. S., Mensah, R. A., Jiang, L., Xu, Q., Das, O., & Berto, F. (2012). Fire Behavior of Wood-Based Composite Materials. Polymers, 13(24), 4352. doi: https://doi.org/10.3390/polym13244352
  24. Ramesh, M., Rajeshkumar, L., Sasikala, G., Balaji, D., Saravanakumar, A., Bhuvaneswari, V., & Bhoopathi, R. (2022). A Critical Review on Wood-Based Polymer Composites: Processing, Properties, and Prospects. Polymers, 14(3), 589. doi: https://doi.org/10.3390/polym14030589
  25. Garay, R., & Henriquez, M. (2010). Comportamiento frente al fuego de tableros y madera de pino radiata con y sin pintura retardante de llama. Maderas Ciencia y Tecnología, 12(1), 11–24. doi: http://dx.doi.org/10.4067/S0718-221X2010000100002
  26. Kadlicová, P., Gašpercová, S., & Osvaldová, L. M. (2017). Monitoring of weight loss of fibreboard during influence of flame. Procedia Engineering, 192, 39 –398. doi: https://doi.org/10.1016/j.proeng.2017.06.068
  27. Galla, Š., & Ivanovicová M. (2013). Assessment of Fire Risk of Selected Agglomerated Wooden Materials. Research Journal of Recent Sciences, 2(7), 43–47. Recuperado de: http://www.isca.in/rjrs/archive/v2/i7/8.ISCA-RJRS-2013-110.pdf
  28. Rowell, R. M. (2013). Handbook of Wood Chemistry and Wood Composites. Boca Raton: CRC Press. doi: https://doi.org/10.1201/b12487
  29. Tureková, I., Ivanovičová, M., Harangózo, J., Gašpercová, S., & Marková, I. (2022). Experimental Study of the Influence of Selected Factors on the Particle Board Ignition by Radiant Heat Flux. Polymers, 14(9), 1648. doi: https://doi.org/10.3390/polym14091648
  30. Haurie, L., Giraldo, M. P., Lacasta, A. M., Montón, J., &, Sonnier, R. (2019). Influence of different parameters in the fire behaviour of seven hardwood species. Fire Safety Journal, 107, 193–201. doi: https://doi.org/10.1016/j.firesaf.2018.08.002
  31. Sotomayor Castellanos, J. R., & Ávila Calderón, L. E. A. (2021). Reacción al Fuego de Tres Maderas Angiospermas Impregnadas con Sales de Boro. Revista Tecnológica Espol – RTE, 33(1), 35–48. doi: https://doi.org/10.37815/rte.v33n1.818
  32. Walker, J. C. F. (2006). Primary Wood Processing. Dordrecht: Springer.
  33. Martin, A. (Ed.). (2015). Wood Composites. Sawston: Woodhead Publishing.
  34. Kumar, R. N., & Pizzi, A. (2019). Adhesives for Wood and Lignocellulosic Materials. Beverly: Scrivener Publishing LLC.