Skip to main navigation menu Skip to main content Skip to site footer

SECTION A: EXACT SCIENCES

Vol. 15 No. 1 (2023)

Demonstrating the feasibility of testing microscopic acausality at the LHC with CMS open data

DOI
https://doi.org/10.18272/aci.v15i1.2780
Submitted
July 25, 2022
Published
2023-05-16

Abstract

In this work, we describe the feasibility to reconstruct acausal vertices that could arise from Lee Wick standard model processes. Using open data from the CMS experiment, we identify measurable wrong displaced vertices associated to acausal-like decays predicted by the Lee Wick model. The signal considered is the pair production of Lee Wick electrons due to its favorable cross-section. The study was carried out for mass values of 200, 300, 400, and 500 GeV for the Lee Wick electron, with the 200 GeV sample being the one closest to satisfying detector resolution limitations. The expected final state consists of one electron and a pair of jets emerging from a wrong displaced vertex for each of the Lee Wick electrons. We detail the method used to reconstruct wrong displaced vertices with the given topology. We also define a new quantity, the parallelity, to better distinguish wrong displaced vertices. We test the possibility to identify acausal decays by comparing the signal, simulated background processes and collisions data from CMS Run 1. An asymmetry in the parallelity distribution suggests the capability of distinguishing acausal decays if ever present.

viewed = 605 times

References

  1. Evans, L., & Bryant, P. (2008). LHC machine. Journal of Instrumentation, 3(08), S08001–S08001. doi: https://doi.org/10.1088/1748-0221/3/08/s08001
  2. Quigg, C. (2004). Nature’s Greatest Puzzles. eConf, C040802, L001. arXiv: https://arxiv.org/abs/hep-ph/0502070
  3. Grinstein, B. [Benjamin], O’Connell, D., & Wise, M. B. (2008). The Lee-Wick standard model. Phys.Rev. D, 77, 025012. doi: https://doi.org/10.1103/PhysRevD.77.025012. arXiv: https://arxiv.org/abs/0704.1845 [hep-ph]
  4. Lee, T. D., & Wick, G. C. (1970). Finite theory of quantum electrodynamics. Phys. Rev. D, 2, 1033–1048. doi: https://doi.org/10.1103/PhysRevD.2.1033
  5. Lee, T. D., & Wick, G. C. (1969). Negative Metric and the Unitarity of the S Matrix. Nucl. Phys. B, 9, 209–243. doi: https://doi.org/10.1016/0550-3213(69)90098-4
  6. Grinstein, B. [Benjamin], O’Connell, D., & Wise, M. B. (2009). Causality as an emergent macroscopic phenomenon: The lee-wicko(n)model. Physical Review D, 79(10). doi: https://doi.org/10.1103/physrevd.79.105019
  7. Alvarez, E., Da Rold, L., Schat, C., & Szynkman, A. (2009). Vertex Displacements for Acausal Particles: Testing the Lee-Wick Standard Model at the LHC. JHEP, 10, 023. doi: https://doi.org/10.1088/1126-6708/2009/10/023. arXiv: https://arxiv.org/abs/0908.2446 [hep-ph]
  8. Chatrchyan, S. [S.] et al. (2008). The CMS Experiment at the CERN LHC. JINST, 3, S08004. doi: https://doi.org/10.1088/1748-0221/3/08/S08004
  9. Wolfram Research Inc. (n.d.). Mathematica, Version 12.3.1. Champaign, IL, 2021. Retrieved from https://www.wolfram.com/mathematica
  10. Alloul, A., Christensen, N. D., Degrande, C., Duhr, C., & Fuks, B. (2014). Feynrules 2.0 — a complete toolbox for tree-level phenomenology. Computer Physics Communications, 185(8), 2250– 2300. doi: https://doi.org/10.1016/j.cpc.2014.04.012
  11. Alwall, J., Herquet, M., Maltoni, F., Mattelaer, O., & Stelzer, T. (2011). Madgraph 5: Going beyond. Journal of High Energy Physics, 2011(6). doi: https://doi.org/10.1007/jhep06(2011)128
  12. Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., . . . Skands, P. Z. (2015). An introduction to pythia 8.2. Computer Physics Communications, 191, 159–177. doi: https://doi.org/10.1016/j.cpc.2015.01.024
  13. CMS-collaboration. (2016). CMS Software Version 5 3 X (CMSSW 5 3 X) (Version 2.3.X). doi: https://doi.org/10.7483/OPENDATA.CMS.WYJG.FYK9
  14. Edgar Carrera, E. U., Cesar Montero. (n.d.). Examples for event generation with 2012 cmssw machinery. Available at https://opendata.cern.ch/record/12052 (2022).
  15. CMS-collaboration. (2017a). Doublephoton primary dataset in aod format from run of 2012. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.CEPG.EXLP
  16. CMS-collaboration. (2017b). Doublephoton primary dataset in aod format from run of 2012. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.KT69.ANB8
  17. CMS-collaboration. (2017c). Simulated dataset dyjetstoll m-50 tunez2star 8tev-madgraph-tarball in aod- sim format for 2012 collision data. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.ARKO.6NV3
  18. CMS-collaboration. (2017d). Simulated dataset ttbar 8tev-madspin amcatnlo-herwig in aodsim format for 2012 collision data. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.XH95.JNSE
  19. CMS-collaboration. (2017e). Simulated dataset w1jetstolnu tunez2star 8tev-madgraph in aodsim format for 2012 collision data. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.REHM.JKUH
  20. CMS-collaboration. (2017f ). Simulated dataset w2jetstolnu tunez2star 8tev-madgraph in aodsim format for 2012 collision data. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.DELK.2V7R
  21. CMS-collaboration. (2017g). Simulated dataset w3jetstolnu tunez2star 8tev-madgraph in aodsim format for 2012 collision data. Open Data Portal. doi: https://doi.org/10.7483/OPENDATA.CMS.HHCJ.TVXH
  22. Chatrchyan, S. [Serguei] et al. (2013). Search in Leptonic Channels for Heavy Resonances Decaying to Long-Lived Neutral Particles. JHEP, 02, 085. doi: https://doi.org/10.1007/JHEP02(2013)085. arXiv: https://arxiv.org/abs/1211.2472 [hep-ex]
  23. CMS-collaboration. (2012). Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions.
  24. Khachatryan, V. et al. (2017). Sea√rch for R-parity violating supersymmetry with displaced vertices in proton-proton collisions at s = 8 TeV. Phys. Rev. D, 95(1), 012009. doi: https://doi.org/10.1103/PhysRevD.95.012009. arXiv: https://arxiv.org/abs/1610.05133 [hep-ex]