Skip to main navigation menu Skip to main content Skip to site footer

SECTION A: EXACT SCIENCES

Vol. 13 No. 2 (2021)

Characterization of gold nanoparticle suspensions in the presence of the poly (N-isopropylacrylamide) -co-poly (3-acrylamidopropyl trimethylammonium) copolymer. Influence of ionic strength and temperature

DOI
https://doi.org/10.18272/aci.v13i2.2338
Submitted
June 11, 2021
Published
2021-11-16

Abstract

The coating of metallic nanoparticles with polymer is of interest to provide stability to the suspensions of said nanoparticles. On the other hand, there are thermosensitive polymers that respond according to the temperatures to which they are exposed.This study aimed to evaluate and characterize the system made up of gold nanoparticles and a version of the thermosensitive copolymer PNIPAAM-PAMPTMA (+) 48/6. For this, dynamic light scattering techniques, zeta potential and ultraviolet visible spectroscopy were used. PNIPAAM-PAMPTMA (+) 48/6 was subjected to tests at different temperatures in which it was confirmed that the lower critical dissolution temperature of the copolymer is approximately 35 oC and that in the presence of a saline medium it tends to add independently of the temperature. On the other hand, the copolymer was mixed with gold nanoparticles to study its behavior at ionic forces between 0 M and 0.75 M. It was found that, by varying the ionic strength in the mentioned range, the coating of the gold nanoparticles by part of the polymer is effective since no aggregation thereof was observed. This was corroborated by the UV-visible spectrum where, the spectra of the system (or nanocomposite) copolymer-nanoparticle at ionic strengths of 0 M and 0.75 M are practically equal to the spectrum when the gold nanoparticles have not added, that is to say , the plasmon peak appears in all cases at the same approximate wavelength of 530 nm. Finally, the evolution of the copolymer-nanoparticle system was studied at different temperatures and ionic forces of 0 M and 0.75 M. It was detected that both the influence of temperature and ionic strength cause the copolymer-nanoparticle system to increase its size. . However, the gold nanoparticles inside it remain without aggregating.

viewed = 346 times

References

  1. Dondapati, S. K., Sau, T. K., Hrelescu, C., Klar, T. A., Stefani, F. D., & Feldmann, J. (2010). Label-free Biosensing Based on Single Gold Nanostars as Plasmonic Transducers. ACS Nano, 4(11), 6318-6322. doi: https://doi.org/10.1021/nn100760f
  2. Rastogi, L., Kora, A. J., & Arunachalam, J. (2012). Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics. Materials Science and Engineering C, 32(6), 1571-1577. doi: https://doi.org/10.1016/j.msec.2012.04.044
  3. Zhang, X. (2015). Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochemistry and Biophysics, 72(3), 771-775. doi: https://doi.org/10.1007/s12013-015-0529-4
  4. Pamies, Ramón, Cifre, J. G. H., Espín, V. F., Collado-González, M., Baños, F. G. D., & De La Torre, J. G. (2014). Aggregation behaviour of gold nanoparticles in saline aqueous media. Journal of Nanoparticle Research, 16(4). doi: https://doi.org/10.1007/s11051-014-2376-4
  5. Pamies, Ramón, Zhu, K., Volden, S., Kj0niksen, A. L., Karlsson, G., Glomm, W. R., & Nyström, B. (2010a). Temperature induced flocculation of gold particles with an adsorbed thermoresponsive cationic copolymer. Journal of Physical Chemistry C, 114(50), 21960-21968. doi: https://doi.org/10.1021/jp106520k
  6. Napper, D. H., & Netschey, A. (1971). Studies of the Steric Stabilization of Colloidal Particles. Journal of Colloid and Interface Science, 37(3), 528-535. doi: https://doi.org/10.1016/0021-9797(71)90330-4
  7. Yavuz, M. S., Cheng, Y., Chen, J., Cobley, C. M., Zhang, Q., Rycenga, M., Xie, J., Kim, C., Song, K. H., Schwartz, A. G., Wang, L. V, & Xia, Y. (2009). Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 8(12), 935-939. doi: https://doi.org/10.1038/nmat2564
  8. Collado-González, M., Fernández Espín, V., Montalbán, M. G., Pamies, R., Hernández Cifre, J. G., Díaz Baños, F. G., Víllora, G., & García de la Torre, J. (2015). Aggregation behaviour of gold nanoparticles in presence of chitosan. Journal of Nanoparticle Research, 17(6). doi: https://doi.org/10.1007/s11051-015-3069-3
  9. Fernandez Espin, V. (2017). Técnicas instrumentales y computacionales para la caracterización de sistemas de macromoléculas y nanopartículas. Implementación y aplicaciones [Tesis de Doctorado]. En Universidad de Murcia. doi: https://doi.org/10.13140/RG.2.1.2171.2482
  10. Zhu, K., Jin, H., Kj0niksen, A. L., & Nyström, B. (2007). Anomalous transition in aqueous solutions of a thermoresponsive amphiphilic diblock copolymer. Journal of Physical Chemistry B, 111(37), 10862-10870. doi: https://doi.org/10.1021/jp074163m
  11. Bayati, S., Zhu, K., Trinh, L. T. T., Kj0niksen, A. L., & Nyström, B. (2012). Effects of temperature and salt addition on the association behavior of charged amphiphilic diblock copolymers in aqueous solution. Journal of Physical Chemistry B, 116(36), 11386-11395. doi: https://doi.org/10.1021/jp306833x
  12. Schild, H. G. (2003). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 17(2), 163-249. doi: https://doi.org/10.1016/0079-6700(92)90023-r
  13. Zhu, M. Q., Wang, L. Q., Exarhos, G. J., & Li, A. D. Q. (2004). Thermosensitive Gold Nanoparticles. Journal of the American Chemical Society, 126(9), 2656-2657. doi: https://doi.org/10.1021/ja038544z
  14. Pecora, R. (1964). Doppler shifts in light scattering from pure liquids and polymer solutions. The Journal of Chemical Physics, 40(6), 1604-1614. doi: https://doi.org/10.1063/1.1725368
  15. Pamies, R, Cifre, J. G. H., & De La Torre, J. G. (2007). Brownian dynamics simulation of polyelectrolyte dilute solutions under shear flow. Journal of Polymer Science, Part B: Polymer Physics, 45(1), 1-9. doi: https://doi.org/10.1002/polb.20994
  16. Zeng, F., Tong, Z., & Sato, T. (1999). Molecular chain properties of poly (N-isopropyl acrylamide). Science in China, Series B: Chemistry, 42(3), 290-297. doi: https://doi.org/10.1007/BF02874245
  17. Sztandera, K., & Gorzkiewicz Michatand Klajnert-Maculewicz, B. (2018). Gold Nanoparticles in Cancer Treatment. doi: https://doi.org/10.1021/acs.molpharmaceut.8b00810