Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 13 No. 2 (2021)

Analysis and evaluation of the cosine efficiency of a polar parabolic trough collector: Application in a subtropical region of Argentina

DOI
https://doi.org/10.18272/aci.v13i2.2283
Submitted
May 9, 2021
Published
2021-11-22

Abstract

The influence of the incident angle of a solar concentrating system to be applied to direct steam generation is reported. Such system consists of an ensemble of a trough collector and a receiver, through which water flows as heating fluid. The trough collector is inclined according to the latitude coordinate, parabolically curved and one-axis tracked. The collector is mathematically analyzed using the data of a typical solar year, and it is compared with another one without inclination. There is a significant improvement in the cosine optical efficiency throughout the year in the polar parabolic trough collector, especially in the winter season. This ensemble is also analyzed employing computer tools based on Tonatiuh Ray-Tracing methodology, and the optimal receiver dimensions were calculated. The polar parabolic trough collector is a promising collector for concentrated solar power systems at subtropical latitudes; it provides a better usage of the solar resource for the processes involved in getting heat or generating electricity, especially in medium and low scale applications.

viewed = 399 times

References

  1. Energy Agency, I. (2017). World Energy Outlook 2017. Organisation for Economic Cooperation and Development. https://doi.org/10.1787/weo-2017-en
  2. Michaelides, E. E. (2012). Alternative Energy Sources. En Green Energy and Technology. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20951-2
  3. Höök, M., & Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy, 52, 797-809. https://doi.org/10.1016/j.enpol.2012.10.046
  4. Fernández-García, A., Zarza, E., Valenzuela, L., & Pérez, M. (2010). Parabolic-trough solar collectors and their applications. Renewable and Sustainable Energy Reviews, 14(7), 1695-1721. https://doi.org/10.1016/J.RSER.2010.03.012
  5. Lovegrove, K., & Stein, W. (2012). Concentrating solar power technology : principles, developments and applications (K. Lovegrove & W. Stein (eds.)). Woodhead Publishing. https://www.elsevier.com/books/concentrating-solar-power-technology/lovegrove/978-1-84569-769-3
  6. Kumar, A., Chand, S., & Umrao, O. P. (2013). Selection and evaluation of different tracking modes performance for parabolic trough solar collector. International Journal of Engineering Research & Technology, 2(6), 2758-2764. https://www.ijert.org/selection-and-evaluation-of-different-tracking-modes-performance-for-parabolic-trough-solar-collector
  7. El-Kassaby, M. M. (1994). Prediction of optimum tilt angle for parabolic trough with the long axis in the north-south direction. International Journal of Solar Energy, 16(2), 99-109. https://doi.org/10.1080/01425919408914269
  8. Vician, P., Palacka, M., Durcansky, P., & Jandacka, J. (2017). Determination of Optimal Position of Solar Trough Collector. Procedia Engineering, 192, 941-946. https://doi.org/10.1016/j.proeng.2017.06.162
  9. Zhang, Y., Qiu, Z. Z., Li, P., Guo, W., Li, Q., & He, J. (2013). Calculating the optimum tilt angle for parabolic solar trough concentrator with the north-south tilt tracking mode. Proceedings - 2013 4th International Conference on Digital Manufacturing and Automation, 2013, 329-334. https://doi.org/10.1109/ICDMA.2013.405
  10. J. Daghero, J. Garnica, A. Buitrago, D. Dubini, C. Lorenzo, C. Manero, M. Marticorena, M., & Martinez, U. S. (2015). Concentrador cilindrico parabólico aplicado a la generación de vapor de uso industrial. Evaluación óptica y térmica de un prototipo. Avances en Energías Renovables y Medio Ambiente, 19, 45-54. http://portalderevistas.unsa.edu.ar/ojs/index.php/averma/article/view/1762
  11. Xu, E., Zhao, D., Xu, H., Li, S., Zhang, Z., Wang, Z., & Wang, Z. (2015). The Badaling 1MW Parabolic Trough Solar Thermal Power Pilot Plant. Energy Procedia, 69, 1471-1478. https://doi.org/10.1016/j.egypro.2015.03.096
  12. Bre, F., & Fachinotti, V. D. (2016). Generation of typical meteorological years for the Argentine Littoral Region. Energy and Buildings, 129, 432-444. https://doi.org/10.1016/j.enbuild.2016.08.006
  13. Zarza Moya, E. (2003). Generación directa de vapor con colectores solares cilindro parabólicos. Proyecto Direct Solar Steam (DISS). http://www.tdx.cat/handle/10803/114351
  14. Reda, I., & Andreas, A. (2004). Solar position algorithm for solar radiation applications. Solar Energy, 76(5), 577-589. https://doi.org/10.1016/j.solener.2003.12.003
  15. Xu, C., Chen, Z., Li, M., Zhang, P., Ji, X., Luo, X., & Liu, J. (2014). Research on the compensation of the end loss effect for parabolic trough solar collectors. Applied Energy, 115, 128-139. https://doi.org/10.1016/j.apenergy.2013.11.003
  16. Blanco, M. J., Amieva, J. M., & Mancillas, A. (2005). The Tonatiuh Software Development Project: An Open Source Approach to the Simulation of Solar Concentrating Systems. Computers and Information in Engineering, 2005, 157­164. https://doi.org/10.1115/IMECE2005-81859
  17. Giglio, A., Lanzini, A., Leone, P., Rodríguez García, M. M., & Zarza Moya, E. (2017). Direct steam generation in parabolic-trough collectors: A review about the technology and a thermo-economic analysis of a hybrid system. Renewable and Sustainable Energy Reviews, 74(March 2016), 453-473. https://doi.org/10.1016/j.rser.2017.01.176
  18. Krüger, D., Pandian, Y., Hennecke, K., & Schmitz, M. (2008). Parabolic trough collector testing in the frame of the REACt project. Desalination, 220(1-3), 612-618. https://doi.org/10.1016/j.desal.2007.04.062