Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 13 No. 2 (2021)

Study of Solid Biomass Combustion Modeling Using Openfoam

DOI
https://doi.org/10.18272/aci.v13i2.2082
Submitted
November 17, 2020
Published
2021-11-16

Abstract

Biomass is an important renewable energy source that has great potential as a substitute for fossil fuels in the short and medium-term, which has led to the development of various methods for its energy conversion, of which combustion is the most widely used. This process has several environmental advantages compared to traditional energy sources, however, there is still a long way to go in terms of process efficiency and emission reduction. In this context, CFD computational models are a powerful tool that allows to study and improve the performance of combustion systems in a safe, fast and economical way, compared to experimental studies. OpenFoam is one of the most important CFD software currently available, however, there are few works that use it to simulate the combustion of solid biomass. In this work an application of the software in modeling of a biomass boiler fueled by grape marc is reported, this model allows predict important parameters like CO, H2O and velocity fields in a 2D domain.

viewed = 466 times

References

  1. Bhuiyan, A. A., Karim, Md. R., & Naser, J. (2016). Chapter 11—Modeling of Solid and Bio-Fuel Combustion Technologies. En M. M. K. Khan & N. M. S. Hassan (Eds.), Thermofluid Modeling for Energy Efficiency Applications (pp. 259-309). Academic Press.
  2. https://doi.org/10.1016/B978-0-12-802397-6.00016-6
  3. Khodaei, H., Al-Abdeli, Y. M., Guzzomi, F., & Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88, 946-972. https://doi.org/10.1016/j.energy.2015.05.099
  4. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., & Bouallou, C. (2010). Precombustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 30(1), 53-62. https://doi.org/10.1016/j.applthermaleng.2009.05.005
  5. Noussan, M., Cerino Abdin, G., Poggio, A., & Roberto, R. (2014). Biomass-fired CHP and heat storage system simulations in existing district heating systems. Applied Thermal Engineering, 71(2), 729-735. https://doi.org/10.1016/j.applthermaleng.2013.11.021
  6. Yin, C., Rosendahl, L. A., & Ksr, S. K. (2008). Grate-firing of biomass for heat and power production. Progress in Energy
  7. Bhuiyan, A. A., & Naser, J. (2015). CFD modelling of co-firing of biomass with coal under oxy-fuel combustion in a large-scale power plant. Fuel, 159, 150-168. https://doi.org/10.1016/j.fuel.2015.06.058
  8. Szemmelveisz, K., Szú'cs, I., Palotás, Á. B., Winkler, L., & Eddings, E. G. (2009). Examination of the combustion conditions of herbaceous biomass. Fuel Processing. Technology, 90(6), 839-847. https://doi.org/10.1016/j.fuproc.2009.03.001
  9. Yang, Y. B., Sharifi, V. N., & Swithenbank, J. (2004). Effect of air flow rate and fuel moisture on the burning behaviours
  10. Dernbecher, A., Dieguez-Alonso, A., Ortwein, A., & Tabet, F. (2019). Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conversion and Biorefinery, 9(1), 129-182. https://doi.org/10.1007/s13399-019-00370-z
  11. García Sánchez, G. F., Chacón Velasco, J. L., & Chaves Guerrero, A. (2013). Modelado de la combustión en motores Diésel: Revisión del estado del arte. REVISTA ION, 26(1). http://revistas.uis.edu.co/index.php/revistaion/article/ view/3506
  12. Versteeg, H., & Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Edición: 2nd rev. ed). Prentice Hall.
  13. Karim, Md. R., & Naser, J. (2014, diciembre 8). Progress in Numerical Modelling of Packed Bed Biomass Combustion. 19th Aust. Fluid Mech. Conf., Melbourne.
  14. Kasper, R. (2017). Particle Simulation with OpenFOAM®. German OpenFoam User meetiNg 2017, Haus der Wissenschaften, Braunschweig, Germany. https://www.foamacademy.com/wpcontent/uploads/2016/11/GOFUN2017_ParticleSimulations_slides.pdf
  15. Chen, G., Xiong, Q., Morris, P. J., Paterson, E. G., Sergeev, A., & Wang, Y. C. (2014). OpenFOAM for computational fluid dynamics. Notices of the American Mathematical Society, 61(4), 354-363. https://doi.org/10.1090/noti1095
  16. Jasak, H. (2009). OpenFOAM: Open source CFD in research and industry. International Journal of Naval Architecture and Ocean Engineering, 1(2), 89-94. https://doi.org/10.2478/IJNAOE-2013-0011
  17. Jasak, H., Jemcov, A., & Kingdom, U. (2007). OpenFOAM: A C++ Library for Complex Physics Simulations. International Workshop on Coupled Methods in Numerical Dynamics, IUC, 1-20.
  18. Cordiner, S., Manni, A., Mulone, V., & Rocco, V. (2014). A Detailed Study of a Multi-MW Biomass Combustor by Numerical Analysis: Evaluation of Fuel Characteristics Impact. Energy Procedia, 61, 751-755. https://doi.org/10.1016/j.egypro.2014.11.958
  19. Cordiner, S., Mulone, V., Manni, A., & Rocco, V. (2016). Biomass furnace study via 3D numerical modeling. International Journal of Numerical Methods for Heat & Fluid Flow, 26(2), 515-533. https://doi.org/10.1108/HFF-03-2015-0089