Skip to main navigation menu Skip to main content Skip to site footer

SECTION C: ENGINEERING

Vol. 11 No. 3 (2019)

Changes in rainfall patterns on the upper Ecuadorian Andean mountains: Analysis of extreme precipitation, ENSO effects and shifts of annual rainfall variation

DOI
https://doi.org/10.18272/aci.v11i3.1067
Submitted
March 27, 2018
Published
2020-01-13

Abstract

Rainfall in the upstream drainage area of the Ecuadorian Andean Mountains (EAM) is an important source of water supply in populated areas. Managing water resource projects depend on rainfall-runoff variation. Even though, it is difficult to understand the mechanism that controls rainfall variation because of the influence of several global and local hydrological processes, this type of research is needed to improve the management of water resources. Understanding these processes is complex due to inaccessibility to these remote zones leading to inefficacy in the monitoring of these gauge stations. Furthermore, there are reports that exposed that climatic anomalies are affecting rainfall-runoff processes around the world. These climate changes cause two main problems in urban infrastructure. First, the occurrence of extreme precipitation events increasing the risk of flooding. Second, changes on annual rainfall variation that could lead to water scarcity in the management of water resource projects. This study focuses on improving the understanding of rainfall trends at EAM and its implications in the management of water resources. The results indicate that 71% of extreme precipitation events were registered in the second period of the last twenty years (1995 - 2015) with severe short rainfall events, during ENSO years in the EAM, threatening hydraulic facilities.

viewed = 712 times

References

  1. Veettil, B. K., Maier, É. L. B., Bremer, U. F., & de Souza, S. F. (2014). Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Climate dynamics, 43(12), 3439-3448. doi: https://doi.org/10.1007/s00382-014-2114-8
  2. Grimm, A. M., Barros, V. R., & Doyle, M. E. (2000). Climate variability in southern South America associated with El Niño and La Niña events. Journal of Climate, 13(1), 35-58.
  3. Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771-2777.
  4. Vicente-Serrano, S. M., Aguilar, E., Martínez, R., Martín-Hernández, N., Azorin-Molina, C., Sanchez-Lorenzo, A., "¦ Nieto, R. (2017). The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48(1-2), 405-427. doi: https://doi.org/10.1007/s00382-016-3082-y
  5. Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., "¦ Wagnon, P. (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81-102. doi: https://doi.org/10.5194/tc-7-81-2013
  6. Ochoa, A., Campozano, L., Sánchez, E., Gualán, R., & Samaniego, E. (2016). Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study. International Journal of Climatology, 36(3), 1244-1255. doi: https://doi.org/10.1002/joc.4418
  7. INAMHI. (2016). BOLETIN CLIMATOLOGICO ANUAL 2015 (Climate National Report No. 002) (p. 31). Ecuador: INAMHI. Retrieved from http://www.serviciometeorologico.gob.ec/clima/
  8. Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes, 21(24), 3316-3327. doi: https://doi.org/10.1002/hyp.6575
  9. Buytaert, W., Celleri, R., Willems, P., Bièvre, B. D., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3-4), 413-421. doi: https://doi.org/10.1016/j.jhydrol.2006.02.031
  10. Fernández, A., & Mark, B. G. (2016). Modeling modern glacier response to climate changes along the Andes Cordillera: A multiscale review: MODELING ANDEAN GLACIERS. Journal of Advances in Modeling Earth Systems, 8(1), 467-495. doi: https://doi.org/10.1002/2015MS000482
  11. Pepin, E., Guyot, J. L., Armijos, E., Bazan, H., Fraizy, P., Moquet, J. S., "¦ Vauchel, P. (2013). Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). Journal of South American Earth Sciences, 44, 85-93. doi: https://doi.org/10.1016/j.jsames.2012.12.010
  12. Basantes-Serrano, R., Rabatel, A., Francou, B., Vincent, C., Maisincho, L., CáCeres, B., "¦ Alvarez, D. (2016). Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995-2012 period. Journal of Glaciology, 62(231), 124-136. doi: https://doi.org/10.1017/jog.2016.17
  13. Smith, J. A., Mark, B. G., & Rodbell, D. T. (2008). The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science, 23(6-7), 609-634. doi: https://doi.org/10.1002/jqs.1224
  14. Wagnon, P., Lafaysse, M., Lejeune, Y., Maisincho, L., Rojas, M., & Chazarin, J. P. (2009). Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. Journal of Geophysical Research, 114(D19). doi: https://doi.org/10.1029/2009JD012292
  15. Committee on Extreme Weather Events and Climate Change Attribution, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies, & National Academies of Sciences, E., and Medicine. (2016). Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: National Academies Press.
  16. Chow, V. T. (1988.). Applied hydrology. New York : McGraw-Hill.
  17. CPE INEN. (1992). Código Ecuatoriano de la Construcción C.E.C: Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a1000 habitantes.
  18. Guevara Espín, K. M. (2010). Empresa metropolitana de alcantarillado y agua potable de Quito (EMAAP-QUITO): Propuesta de estrategias comunicacionales para involucrar a la ciudadanía quiteña, en la prevención de los eventos adversos que trae consigo la estación invernal (B.S. thesis). Quito: Universidad de las Américas, 2010.
  19. Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., "¦ Guyot, J.-L. (2011). Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology, 287(1-2), 1-26. doi: https://doi.org/10.1016/j.chemgeo.2011.01.005
  20. Cárdenas, M. L., Gosling, W. D., Sherlock, S. C., Poole, I., Pennington, R. T., & Mothes, P. (2011). The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science, 331(6020), 1055-1058.
  21. Heglund, J. M. (2010). Can Climate Change Affect Sediment Transport in a Watershed? In Can Climate Change Affect Sediment Transport in a Watershed? Reston, VA; American Society of Civil Engineers; 2010.