Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías -El Politécnico- Calle Diego de Robles y Via Interoceánica, Casilla Postal 17-1200-841, Quito, Ecuador
Welding processes involve complex couplings between fluid dynamics, heat transfer and the metallurgical changes experienced by the base metal. Distortion, residual stresses, grain structure, cooling rates, high temperatures and consequently the reduced strength of a structure in and around a weld joint are produced by the localized thermal cycling caused by the intense heat input of fusion welding. With the virtual prediction of weld profiles (shape and size), solidification structures, distribution of impurities, formation of dislocations, distortions and residual stresses of a welded part, processes can be optimized in the early stages of prototyping.
The technological properties of fusion welds are formed due to the simultaneous effects of different physical phenomena which occur on different length scales. Correspondingly the simulation of technological properties of fusion welds requires the multi scale approach.
viewed = 485 times
References
Wu Ch. S.; Yan F. 2004. "Numerical Simulation of transient development and diminution of weld pool in Gas Tungsten Arc Welding." Modelling Simul. Mater. Sci. Eng. 12: 13-20.
Bonifaz, E. A., 2000. "Finite Element Analysis of heat flow in single pass arc welds." Welding Journal. 79: 121-125.
Bonifaz, E. A., 2007. "Thermo-Mechanical Modeling of Single Fusion Welds" Canadian Welding Association Journal. 1: 13-20.
Thiessen R. G.; Richardson, I. M. 2006. Metall. Mater. Trans. B. 37B: 655-663.
Debroy, T.; David, S. A. 1995. "Physical processes in fusion welding." Reviews of Modern Physics. 67: 85-112.
Brown, S. B.; Song, H. 1992. "Implications of Three-Dimensional Numerical Simulations of Welding of Large Structures" Welding Journal. 71: 55-62.
Lubarda, V.A.; Schneider, M.S.; Kalantar, D.H.; Remington, B.A.; Meyers, M.A. 2004. "Void growth by dislocation emission" Acta Materialia. 52: 1397-1408.
Bonifaz, E. A.; Richards, N. L. 2009. "Modeling Cast In-738 Superalloy Gas-Tungsten-Arc-Welds" Acta Materialia. 57: 1785-1794.
Kou S. 2003. "Welding metallurgy." 2nd ed. Wiley:,New York, NY.
Norman, A. F.; Ducharme, R.; Mackwood, A.; Kapadia, P.; Prangnell P. B. 1998. "Aplication of thermal modelling to laser beam weldingof aluminum alloys." Sci Technol Welding Joining. 3: 260-266.
Goldak, J. A.; Chakravarti, A. P.; Bibby, M.; 1984. "A new finite element model for welding heat sources." Metallurgical Transactions. 15B: 299-305.
Goldak, J.; Bibby, M.; Moore, J.; House, R.; Patel, B. 1986. "Computer modeling of heat flows in welds." Metallurgical Transactions. 17B: 587-600.
Paul, A.; Debroy, T. 1988. "Free surface flow and heat transfer in conduction mode laser welding." Met. Trans. B. 19: 851-858.
Bonifaz, E.A.; Richards, N.L. 2010. "Stress-Strain Evolution in Cast IN-738 Superalloy Single Fusion Welds." International Journal of Applied Mechanics. 2: 807-826.
Bonifaz, E.A.; Gil Sevillano, J. 2000. "Modelo elasto-plastico de estructuras bifasicas policristalinas." PhD thesis, Escuela Superior de Ingenieros, University of Navarra, Spain.
Gao, H.; Huang, Y.; Nix, W.D.; Hutchinson, J.W. 1999. Journal of the Mechanics and Physics of Solids. 47: 1239-1263.
Bonifaz, E. A.; Richards, N. L. 2008. "The plastic deformation of non-homogeneous polycrystals." Int. J. Plasticity. 24: 289-301.