Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN A: CIENCIAS EXACTAS

Vol. 15 Núm. 1 (2023)

A Data Driven Solution to the Dark Matter Problem

DOI
https://doi.org/10.18272/aci.v15i1.2961
Enviado
abril 27, 2023
Publicado
2023-05-16

Resumen

A data driven solution to the dark matter problem is presented. This short and self-contained overview is intended for a wide audience, with full technical details available in the cited references. We present redundant, independent and consistent measurements of the dark matter particle comoving root-mean-square velocity vhrms(1), or equivalently, of the dark matter temperature-to-mass ratio. These measurements agree with the “no freeze-in and no freeze-out” scenario of spin zero dark matter that decouples early on from the Standard Model sector, e.g. spin zero dark matter coupled to the Higgs boson or to the top quark.

About this paper
The present article was published on April 13th, 2023 in the European Journal of Applied Sciences and it has been assigned a DOI by the EJAS. The work is republished by ACI Avances en Ciencias e Ingenierías according to the creative commons license (Attribution 4.0 International, CC BY 4.0) used by the EJAS, and according to the copyright preserved by the author, Bruce Hoeneisen. Readers can access the original publication via the following link: https://journals.scholarpublishing.org/index.php/AIVP/article/view/14383 or through the DOI: https://doi.org/10.14738/aivp.112.14383.

viewed = 344 times

Citas

  1. Particle Data Group et. al. (2020). Review of Particle Physics. Progress of Theoretical and Experimental Physics, 2020 (8). doi: https://doi.org/10.1093/ptep/ptaa104
  2. Zwicky, F. (1937). On the masses of nebulae and of clusters of nebulae. Astrophys. J., 86, 217. doi: http://dx.doi.org/10.1086/143864
  3. Profumo, S. (2017). An introduction to particle dark matter. World Scientific. doi: https://doi.org/10.1142/q0001
  4. Hoeneisen, B. (2022a). Comments on warm dark matter measurements and limits. International Journal of Astronomy and Astrophysics, 12, 94–109. doi: https://doi.org/10.4236/ijaa.2022.121006
  5. Paduroiu, S., Revaz, Y. and Pfenniger, D. (2015). Structure formation in warm dark matter cosmologies top-bottom upside-down. arxiv: https://arxiv.org/pdf/1506.03789.pdf
  6. Hoeneisen, B. (2022b). Measurement of the dark matter velocity dispersion with dwarf galaxy rotation curves. International Journal of Astronomy and Astrophysics, 12, 363–381. doi: https://doi.org/10.4236/ijaa.2022.124021
  7. Boyanovsky, D., de Vega, H. and Sanchez, N. (2008). The dark matter transfer function: Free streaming, particle statistics and memory of gravitational clustering. Physical Review D, 78 (6). doi: https://doi.org/10.1103%2Fphysrevd.78.063546
  8. Song, M., Finkelstein, S. L., Ashby, M. L. N. et al. (2016). The evolution of the galaxy stellar mass function at z = 4 - 8: A steepening low-mass-end slope with increasing redshift. ApJ, 825, 5. doi: https://doi.org/10.48550/arXiv.1507.05636
  9. Grazian, A., Fontana, A., Santini, P. et al. (2015). The galaxy stellar mass function at 3.5 ≤ z ≤ 7.5 in the candels/uds, goods-south, and hudf fields. Astronomy and Astrophysics, 575, A96. doi: https://doi.org/10.1051/0004-6361/201424750
  10. Davidzon, I., Ilbert, O., Laigle, C. et al. (2017). The cosmos2015 galaxy stellar mass function: 13 billion years of stellar mass assembly in 10 snapshots. Astronomy and Astrophysics, 605. doi: https://doi.org/10.1051/0004-6361/201730419
  11. Bouwens, R. and et al. (2015). Uv luminosity functions at redshifts z ≈ 4 to z ≈ 10:10000 galaxies from hst legacy fields. The Astrophysical Journal, 803, 34. doi: https://doi.org/10.1088/0004-637X/803/1/34
  12. Bouwens, R. and et al. (2021). New determinations of the uv luminosity functionsfrom z ≈ 9 to z ≈ 2 show a remarkable consistency with halo growth and a constant star formation efficiency. The Astronomical Journal, 162 (2). doi: https://doi.org/10.3847/1538-3881/abf83e
  13. McLeod, D. and et al. (2015). New redshift z ≈ 9 galaxies in the hubble frontier fields: Implications for early evolution of the uv luminosity density. MNRAS, 450 (3), 3032. doi: https://doi.org/10.1093/mnras/stv780
  14. Lapi, A. and Danese, L. (2015). Cold or warm? constraining dark matter with primeval galaxies and cosmic reionization after planck. Journal of Cosmology and Astroparticle Physics, 2015. doi: https://doi.org/10.1088/1475-7516/2015/09/003
  15. Bouwens, R., Illingworth, G. and Oesch, P. (2014). Uv-continuum slopes of 4000 z ≈ 4−8 galaxies from the hudf/xdf, hudf09, ers, candels-south, and candels-north fields. ApJ, 793, 115. doi: https://doi.org/10.1088/0004-637X/793/2/115
  16. Hoeneisen, B. (2022c). Warm dark matter and the formation of first galaxies. Journal of Modern Physics, 13, 932–948. doi: https://doi.org/10.4236/jmp.2022.136053
  17. Hoeneisen, B. (2022d). Measurement of the dark matter velocity dispersion with galaxy stellar masses, uv luminosities, and reionization. International Journal of Astronomy and Astrophysics, 12, 258–272. doi: https://doi.org/10.4236/ijaa.2022.123015
  18. Hoeneisen, B. (2022e). Warm dark matter and the formation of first galaxies. Journal of Modern Physics, 13, 932–948. doi: https://doi.org/10.4236/jmp.2022.136053
  19. Hoeneisen, B. (2019a). The adiabatic invariant of dark matter in spiral galaxies. International Journal of Astronomy and Astrophysics, 9, 355–367. doi: https://doi.org/10.4236/ijaa.2019.94025
  20. Oh, S. and et al. (2015). High-resolution mass models of dwarf galaxies from little things. The Astronomical Journal, 149, 180. doi: https://doi.org/10.1088/0004-6256/149/6/180
  21. Hoeneisen, B. (2019b). A study of dark matter with spiral galaxy rotation curves. International Journal of Astronomy and Astrophysics, 9, 71–96. doi: https://doi.org/10.4236/ijaa.2019.92007
  22. Hoeneisen, B. (2023). A study of warm dark matter, the missing satellites problem, and the uv luminosity cut-off. International Journal of Astronomy and Astrophysics,13, 25–38. doi: https://doi.org/10.4236/ijaa.2023.131002
  23. Hoeneisen, B. (2021). Adding dark matter to the standard model. International Journal of Astronomy and Astrophysics, 11, 59–72. doi: https://doi.org/10.4236/ijaa.2021.111004
  24. Hoeneisen, B. (2020). What is dark matter made of? [Presentado at the 3rd World Summit on Exploring the Dark Side of the Universe Guadeloupe Islands, March 9-13 2020]. https://inspirehep.net/files/7cfb2bf406baf315315e389e6eff3809
  25. Bezrukov, F., Magnin, A., Shaposhnikov, M. and Sibiryakov, S. (2011). Higgs inflation: Consistency and generalisations. JHEP, 01, 016. doi: https://doi.org/10.1007/JHEP01(2011)016