Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN A: CIENCIAS EXACTAS Y FÍSICAS

Vol. 15 Núm. 1 (2023)

A Data Driven Solution to the Dark Matter Problem

DOI
https://doi.org/10.18272/aci.v15i1.2961
Enviado
abril 27, 2023
Publicado
2023-05-16

Resumen

A data driven solution to the dark matter problem is presented. This short and self-contained overview is intended for a wide audience, with full technical details available in the cited references. We present redundant, independent and consistent measurements of the dark matter particle comoving root-mean-square velocity vhrms(1), or equivalently, of the dark matter temperature-to-mass ratio. These measurements agree with the “no freeze-in and no freeze-out” scenario of spin zero dark matter that decouples early on from the Standard Model sector, e.g. spin zero dark matter coupled to the Higgs boson or to the top quark.

About this paper
The present article was published on April 13th, 2023 in the European Journal of Applied Sciences and it has been assigned a DOI by the EJAS. The work is republished by ACI Avances en Ciencias e Ingenierías according to the creative commons license (Attribution 4.0 International, CC BY 4.0) used by the EJAS, and according to the copyright preserved by the author, Bruce Hoeneisen. Readers can access the original publication via the following link: https://journals.scholarpublishing.org/index.php/AIVP/article/view/14383 or through the DOI: https://doi.org/10.14738/aivp.112.14383.

viewed = 241 times

Citas

  1. P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  2. F. Zwicky, (1937) Astrophys. J. 86, 217.
  3. Stephano Profumo (2017) An Introduction to Particle Dark Matter, World Scientific.
  4. Hoeneisen, B. (2022) Comments on Warm Dark Matter Measurements and Limits International Journal of Astronomy and Astrophysics, 12, 94-109.
  5. Paduroiu, S., Revaz, Y., Pfenniger, D. (2015) Structure formation in warm dark matter cosmologies Top-Bottom Upside-Down. https://arxiv.org/pdf/1506.03789.pdf
  6. Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Dwarf Galaxy Rotation Curves, International Journal of Astronomy and Astrophysics, 12, 363-381.
  7. Boyanovsky, D., de Vega, H.J. and Sanchez, N.G. (2008) The DarkMatter Transfer Function: Free Streaming, Particle Statistics and Memory of Gravitational Clustering. Physical Review D, 78, Article ID: 063546.
  8. Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. (2016) The Evolution of the Galaxy Stellar Mass Function at z = 4 - 8: A Steepening Low-mass-end Slope with Increasing Redshift, ApJ, 825, 5
  9. Grazian, A., Fontana, A., Santini, P., et al. (2015) The galaxy stellar mass function at 3.5 ≤ z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields, Astronomy and Astrophysics 575, A96
  10. Davidzon, I., Ilbert, O., Laigle, C., et al. (2017) The COSMOS2015 galaxy stellar mass function: 13 billion years of stellar mass assembly in 10 snapshots, Astronomy and Astrophysics 605, DOI: 10.1051/0004-6361/201730419
  11. Bouwens, R.J. et al. (2015) UV Luminosity Functions at Redshifts z ≈ 4to z ≈ 10: 10000 Galaxies from HST Legacy Fields. The Astrophysical Journal, 803:349
  12. Bouwens, R.J. et al. (2021) New Determinations of the UV Luminosity Functions from z ≈ 9 to z ≈ 2 show a Remarkable Consistency with Halo Growth and a Constant Star Formation efficiency. The Astronomical Journal, 162 (2). doi:10.3847/1538-3881/abf83e
  13. McLeod, D. J., et al. (2015) New redshift z ≈ 9 galaxies in the Hubble Frontier Fields: Implications for early evolution of the UV luminosity density, MNRAS 450, 3032
  14. Lapi, A., Danese, L. (2015) Cold or Warm? Constraining Dark Matter with Primeval Galaxies and Cosmic Reionization after Planck. Journal of Cosmology and Astroparticle Physics, Volume 2015
  15. Bouwens, R.J., Illingworth, G.D., Oesch, P.A. (2014) UV-continuum slopes of 4000 z ≈ 4 − 8 galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-North Fields, ApJ 793, 115
  16. Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies, Journal of Modern Physics, 13, 932-948.
  17. Hoeneisen, B. (2022) Measurement of the Dark Matter Velocity Dispersion with Galaxy Stellar Masses, UV Luminosities, and Reionization. International Journal of Astronomy and Astrophysics, 12, 258-272.
  18. Hoeneisen, B. (2022) Warm Dark Matter and the Formation of First Galaxies, Journal of Modern Physics, 13, 932-948.
  19. Hoeneisen, B. (2019), The Adiabatic Invariant of Dark Matter in Spiral Galaxies, International Journal of Astronomy and Astrophysics, 9, 355-367.
  20. Oh, S. et al. (2015) High-Resolution Mass Models of Dwarf Galaxies from LITTLE THINGS, The Astronomical Journal, 149, 180.
  21. Hoeneisen, B. (2019) A Study of Dark Matter with Spiral Galaxy Rotation Curves. International Journal of Astronomy and Astrophysics, 9, 71-96.
  22. Hoeneisen, B. (2023), A Study of Warm Dark Matter, the Missing Satellites Problem, and the UV Luminosity Cut-Off. International Journal of Astronomy and Astrophysics, 13, 25-38.
  23. Hoeneisen, B. (2021) Adding Dark Matter to the Standard Model International Journal of Astronomy and Astrophysics, 11, 59-72.10
  24. Hoeneisen, B. (2020), What is dark matter made of?, Presented at the 3rd World Summit on Exploring the Dark Side of the UniverseGuadeloupe Islands, March 9-13 2020, https://inspirehep.net/files/7cfb2bf406baf315315e389e6eff3809
  25. F. Bezrukov, A. Magnin, M. Shaposhnikov, and S. Sibiryakov (2011) Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016.