Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN C: INGENIERÍAS

Vol. 15 Núm. 1 (2023)

Diseño de una ruta de conversión de residuos lignocelulósicos para la producción de butano como sustituto del gas licuado de petróleo

DOI
https://doi.org/10.18272/aci.v15i1.2884
Enviado
enero 15, 2023
Publicado
2023-05-16

Resumen

El gas licuado de petróleo (GLP) es un producto de primera necesidad, principalmente de uso doméstico, que representa el 10.4% de la demanda energética del Ecuador. A falta de mecanismos para la valorización de los residuos lignocelulósicos en el país, se planteó una ruta de conversión de biomasa a butano como sustituto del GLP, mediante un diseño computacional para evaluar su viabilidad técnica, económica y ambiental. Se seleccionó el residuo óptimo para su conversión a GLP en base a la tasa de generación anual y composición físico-química, la configuración de la ruta se diseñó en AspenPlus® con una entrada de 77 t/h de biomasa. En función de los resultados se realizó un análisis económico y de ciclo de vida usando el software openLCA®. La producción de butano alcanzó las siete toneladas por hora y una densidad energética de 26.7 MJ/L. En cuanto al eje económico, el precio de venta mínimo calculado fue de 1.03$/kg, considerando la venta de la lignina como coproducto. De esta manera, el biocombustible fue competitivo con el precio de venta al público de un dólar por kilogramo de GLP. Finalmente, la huella de carbono total del proceso fue de 102 g CO2-eq/MJ, valor superior al estándar europeo de 94 g CO2-eq/MJ. Esta investigación abre la puerta hacia la optimización de los recursos y transformación de la matriz energética del país.

viewed = 533 times

Citas

  1. Ryskamp, R. (2017). Emissions and Performance of Liquefied Petroleum Gas as a Transportation Fuel: A Review. Recuperado de https://auto-gas.net/wp-content/uploads/2019/11/2017-WLPGA-Literature-Review.pdf
  2. Troncoso, K., & Soares, A. (2017). LPG fuel subsidies in Latin America and the use of solid fuels to cook. Energy Policy, 107(January), 188–196. https://doi.org/10.1016/j.enpol.2017.04.046
  3. WLPGA, & Argus. (n/f). Latin America 2020 WLPGA.
  4. Ministerio de Energía y Minas. (2021a). Balance Energético Nacional 2021.
  5. Banco Central del Ecuador. (2012). Reporte Del Sector Petrolero. In Banco Central del Ecuador. Recuperado de https://contenido.bce.fin.ec/documentos/Estadisticas/Hidrocarburos/ASP201606.pdf
  6. Banco Central del Ecuador. (n/f). Informe de la evolución de la economía ecuatoriana en 2021 y perspectivas 2022. Recuperado de https://contenido.bce.fin.ec/documentos/Administracion/EvolEconEcu_2021pers2022.pdf
  7. Márquez, J. (2021). Boletin Técnico: Encuesta de Superficie y Producción Agropecuaria Continua, 2020. Recuperado de https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2020/Boletin%20Tecnico%20ESPAC%202020.pdf
  8. Loor, M. C., Andrade, F., Lizarzaburu, L., & Masache, M. (2017). Valoración económica de los cobeneficios del aprovechamiento energético de los residuos agrícolas en el Ecuador. Recuperado de https://www.cepal.org/es/publicaciones/41830-valoracion-economica-cobeneficios-aprovechamiento-energetico-residuos-agricolas
  9. Ballesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739. https://doi.org/10.1016/j.scitotenv.2020.139755
  10. Singh, R., Das, R., Sangwan, S., Rohatgi, B., Khanam, R., Peera, S. K. P. G., Das, S., Lyngdoh, Y. A., Langyan, S., Shukla, A., Shrivastava, M., & Misra, S. (2021). Utilisation of agro-industrial waste for sustainable green production: a review. Environmental Sustainability, 4(4), 619–636. https://doi.org/10.1007/s42398-021-00200-x
  11. The Global LPG Partnership. (2020). Assessing Potential for BioLPG Production and Use within the Cooking Energy Sector in Africa. Global LPG Partnership, September. Recuperado de https://mecs.org.uk/wp-content/uploads/2020/09/GLPGP-Potential-for-BioLPG-Production-and-Use-as-Clean-Cooking-Energy-in-Africa-2020.pdf
  12. Johnson, E. (2019a). Process technologies and projects for BiOLPG. In Energies (Vol. 12, Issue 2). MDPI AG. https://doi.org/10.3390/en12020250
  13. Teimouri, Z., Abatzoglou, N., & Dalai, A. K. (2021). Kinetics and selectivity study of fischer-tropsch synthesis to c5+ hydrocarbons: A review. Catalysts, 11(3), 19–31. https://doi.org/10.3390/catal11030330
  14. Kan, T., Strezov, V., Evans, T., He, J., Kumar, R., & Lu, Q. (2020). Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure. In Renewable and Sustainable Energy Reviews (Vol. 134). Elsevier Ltd. https://doi.org/10.1016/j.rser.2020.110305
  15. Costa, M., Piazzullo, D., Di, D., & Vita, A. De. (2022). Sustainability assessment of the whole biomass-to-energy chain of a combined heat and power plant based on biomass gasification : biomass supply chain management and life cycle assessment. Journal of Environmental Management, 317, 115434. https://doi.org/10.1016/j.jenvman.2022.115434
  16. Vela-garcía, N., Bolonio, D., García-martínez, M., Ortega, M. F., Almeida, D., & Canoira, L. (2021). Biojet fuel production from oleaginous crop residues : thermoeconomic , life cycle and flight performance analysis. Energy Conversion and Management, 244, 114534. https://doi.org/10.1016/j.enconman.2021.114534
  17. Onwudili, J. A., & Nouwe Edou, D. J. (2022). Process modelling and economic evaluation of biopropane production from aqueous butyric acid feedstock. Renewable Energy, 184, 80–90. https://doi.org/10.1016/j.renene.2021.11.043
  18. Retto-Hernandez, P., Rojas, M. L., Lescano, L., Sanchez-Gonzalez, J., & Linares, G. (2020a). Lignocellulosic agroindustrial waste in Peru: Potential for bioethanol, energy, and reduction of CO2 emission. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.463
  19. Vandenberghe, L. P. de S., Junior, N. L., Valladares-Diestra, K. K., Bittencourt, G. A., Murawski de Mello, A. F., Karp, S. G., Junior Letti, L. A., & Soccol, C. R. (2022). Nonwaste technology in the bioethanol and biodiesel industries. Biofuels and Bioenergy, 41–60. https://doi.org/10.1016/B978-0-323-85269-2.00019-8
  20. Arce, C., & Kratky, L. (2022). Mechanical pretreatment of lignocellulosic biomass toward enzymatic/fermentative valorization. IScience, 25(104610), 1–8. https://doi.org/10.1016/j.isci
  21. Shimizu, F. L., Monteiro, P. Q., Ghiraldi, P. H. C., Melati, R. B., Pagnocca, F. C., Souza, W. de, Sant’Anna, C., & Brienzo, M. (2018). Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Industrial Crops and Products, 115, 62–68. https://doi.org/10.1016/j.indcrop.2018.02.024
  22. Pfromm, P. (2008). The Minimum Water Consumption of Ethanol Production via Biomass Fermentation. The Open Chemical Engineering Journal, 2(2). DOI: 10.2174/1874123100802010001
  23. de Souza, E. L., Sellin, N., Marangoni, C., & Souza, O. (2017). The Influence of Different Strategies for the Saccharification of the Banana Plant Pseudostem and the Detoxification of Concentrated Broth on Bioethanol Production. Applied Biochemistry and Biotechnology, 183(3), 943–965. https://doi.org/10.1007/s12010-017-2475-7
  24. Souza, E. L., Liebl, G. F., Marangoni, C., Sellin, N., Montagnoli, M. S., & Souza, O. (2014). Bioethanol from fresh and dried banana plant pseudostem. Chemical Engineering Transactions, 38, 271–276. https://doi.org/10.3303/CET1438046
  25. Shoji, T., Kawamoto, H., & Saka, S. (2014). Boiling point of levoglucosan and devolatilization temperatures in cellulose pyrolysis measured at different heating area temperatures. Journal of Analytical and Applied Pyrolysis, 109, 185–195. https://doi.org/10.1016/j.jaap.2014.06.014
  26. Wang, J., Shen, X., Lin, Y., Chen, Z., Yang, Y., Yuan, Q., & Yan, Y. (2018). Investigation of the Synergetic Effect of Xylose Metabolic Pathways on the Production of Glutaric Acid. ACS Synthetic Biology, 7(1), 24–29. https://doi.org/10.1021/acssynbio.7b00271
  27. Moysés, D. N., Reis, V. C. B., de Almeida, J. R. M., de Moraes, L. M. P., & Torres, F. A. G. (2016). Xylose fermentation by saccharomyces cerevisiae: Challenges and prospects. In International Journal of Molecular Sciences, 17(3). MDPI AG. https://doi.org/10.3390/ijms17030207
  28. Nosrati-Ghods, N., Harrison, S. T. L., Isafiade, A. J., & Tai, S. L. (2020). Analysis of ethanol production from xylose using Pichia stipitis in microaerobic conditions through experimental observations and kinetic modelling. Biochemical Engineering Journal, 164. https://doi.org/10.1016/j.bej.2020.107754
  29. Silva, J. P. A., Mussatto, S. I., Roberto, I. C., & Teixeira, J. A. (2011). Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank biorreactor. Brazilian Journal of Chemical Engineering, 28(1), 151–156. www.abeq.org.br/bjche
  30. Gil, I. D., Uyazán, A. M., Aguilar, J. L., Rodríguez, G., & Caicedo, L. A. (2008). SEPARATION OF ETHANOL AND WATER BY EXTRACTIVE DISTILLATION WITH SALT AND SOLVENT AS ENTRAINER: PROCESS SIMULATION. Brazilian Journal of Chemical Engineering, 25(01), 207–215. https://doi.org/10.1590/S0104-66322008000100021
  31. Junqueira, T. L., Filho, R. M., & Maciel, M. R. W. (2009). Simulation of distillation process in the bioethanol production using nonequilibrium stage model. In Computer Aided Chemical Engineering 27(C). Elsevier Inc. https://doi.org/10.1016/S1570-7946(09)70343-8
  32. Li, G., & Bai, P. (2012). New operation strategy for separation of ethanol-water by extractive distillation. Industrial and Engineering Chemistry Research, 51(6), 2723–2729. https://doi.org/10.1021/ie2026579
  33. Frosi, M., Tripodi, A., Conte, F., Ramis, G., Mahinpey, N., & Rossetti, I. (2021a). Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. Journal of Industrial and Engineering Chemistry, 104, 272–285. https://doi.org/10.1016/j.jiec.2021.08.026
  34. Becerra, J., Quiroga, E., Tello, E., Figueredo, M., & Cobo, M. (2018). Kinetic modeling of polymer-grade ethylene production by diluted ethanol dehydration over H-ZSM-5 for industrial design. Journal of Environmental Chemical Engineering, 6(5), 6165–6174. https://doi.org/10.1016/j.jece.2018.09.035
  35. ACS Material. (n/f). Technical Data Sheet Series Zeolite Powder. Recuperado de https://www.acsmaterial.com/zsm-5-series-zeolite-powder.html
  36. Frosi, M., Tripodi, A., Conte, F., Ramis, G., Mahinpey, N., & Rossetti, I. (2021b). Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. Journal of Industrial and Engineering Chemistry, 104, 272–285. https://doi.org/10.1016/j.jiec.2021.08.026
  37. Al-Faze, R., Kozhevnikova, E. F., & Kozhevnikov, I. v. (2021). Diethyl Ether Conversion to Ethene and Ethanol Catalyzed by Heteropoly Acids. ACS Omega, 6(13), 9310–9318. https://doi.org/10.1021/acsomega.1c00958
  38. Palomino Infante, A. (2004). Análisis Pinch y su contribución a la integración de procesos. Revista de la Sociedad Química del Perú, 70(3), 167–174. Recuperado de https://sisbib.unmsm.edu.pe/bibvirtualdata/publicaciones/rsqp/n3_2004/a06.pdf
  39. Rossi, C. (2021). Análisis PINCH: Herramienta práctica para la eficiencia térmica en procesos, reducción de costos e impacto ambiental. Recuperado de https://www.cecacier.org/wp-content/uploads/2021/07/Analisis-Pinch-24-6-2021-CRS.pdf
  40. Mohammadzade Fard, S., Farsi, M., & Rahimpour, M. R. (2021). Optimization of ethylene dimerization in a bubble column reactor based on coupling kinetic and equilibrium models. Chemical Engineering Research and Design, 174, 357–364. https://doi.org/10.1016/j.cherd.2021.07.030
  41. Belov, G. P. (2008). Selective dimerization, oligomerization, homopolymerization and copolymerization of olefins with complex organometallic catalysts. In Russian Journal of Applied Chemistry, 81(9), 1655–1666). https://doi.org/10.1134/S107042720809036X
  42. Hamed, S., Soudbar, D., & Pavari, M. (2010). Selective Ethylene Dimerization Toward 1-butene by a New Highly Efficient Catalyst System and Determination of Its Optimum Operating Conditions in a Buchi Reactor. International Journal of Chemical Engineering and Applications, 1(3), 276–281. doi 10.7763/ijcea.2010.v1.48
  43. Ristovic, M., & Pacolli, M. (2017). Oligomerization of Ethylene and Ethanol into Fuel Through Heterogeneous Catalysis. Lund University. Recuperado de https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=8916580&fileOId=8916582
  44. Kwantlen Polytechnic University. (n/f). Reaction of Alkenes: Hydrogenation. Recuperado de https://kpu.pressbooks.pub/organicchemistry/chapter/10-5-reaction-of-alkenes-hydrogenation/#
  45. Akchurin, T. I., Baibulatova, N. Z., Grabovskii, S. A., Talipova, P. P., Galkin, E. G., & Dokichev, V. A. (2016). Alkene hydrogenation over palladium supported on a carbon–silica material. Kinetics and Catalysis, 57(5), 586–591. https://doi.org/10.1134/S0023158416050025
  46. Tianlong. (n/f). LPG Cylinder. Recuperado de https://www.alibaba.com/product-detail/Lpg- Cylinder-Hot-Quality-12-5kg_62455310881.html?spm=a2700.galleryofferlist.normal_offer.d_image.c96d26e099dlRc&s=p
  47. Economic Indicators. (2014, marzo). Chemical Engineering. Recuperado de www.che.com/pci
  48. Guthrie, K. M. (1969). Capital Cost Estimating. Chemical Engineering. 114-142.
  49. Mignard, D. (2014). Correlating the chemical engineering plant cost index with macro-economic indicators. Chemical Engineering Research and Design, 92(2), 285–294. https://doi.org/10.1016/j.cherd.2013.07.022
  50. Cheali, P., Gernaey, K. v., & Sin, G. (2015). Uncertainties in early-stage capital cost estimation of process design - A case study on biorefinery design. Frontiers in Energy Research, 3(FEB). https://doi.org/10.3389/fenrg.2015.00003
  51. Office of Energy Efficiency & Renewable Energy. (n/f.). Bioenergy Career Grid. Recuperado de https://www.energy.gov/eere/bioenergy/bioenergy-career-grid
  52. Zhang, Y., Goldberg, M., Tan, E., & Meyer, P. A. (2016). Estimation of economic impacts of cellulosic biofuel production: A comparative analysis of three biofuel pathways. Biofuels, Bioproducts and Biorefining, 10(3), 281–298. https://doi.org/10.1002/bbb.1637
  53. Bureau of Labor Statistics. (2021). May 2021 OEWS Research Estimates. In Nursing Research 16(1). Recuperado de https://www.bls.gov/oes/2021/may/oes_research_estimates.htm
  54. Vianey, J. (2018). Aportes teóricos sobre el flujo de caja. https://doi.org/10.13140/RG.2.2.29021.72166
  55. Lindorfer, J., Rosenfeld, D., Annevelink, B., & Mandl, M. (2019, junio). Technical, Economic and Environmental Assessment of Biorefinery Concepts Developing a practical approach for characterization. IEA Bioenergy. Recuperado de https://www.ieabioenergy.com/blog/publications/new-publication-technical-economic-and-environmental-assessment-of-biorefinery-concepts-developing-a-practical-approach-for-characterisation/
  56. GreenDelta. (2022). openLCA modeling suite. Recuperado de https://www.openlca.org/openlca/
  57. Li, M., & Subramaniam, B. (2017). LCA for Green Chemical Synthesis Terephthalic Acid. Encyclopedia of Sustainable Technologies, 387–396. https://doi.org/10.1016/B978-0-12-409548-9.10086-7
  58. Neves, T. I., Uyeda, C. A., Carvalho, M., & Abrahão, R. (2018). Environmental evaluation of the life cycle of elephant grass fertilization — Cenchrus purpureus (Schumach.) Morrone — using chemical fertilization and biosolids. https://doi.org/10.1007/s10661-017-6406-4
  59. Estrella, L. H. (2021). Factor de emisión de CO2 del Sistema Nacional Interconectado - Informe 2020. 40. Recuperado de https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/11/factor_de_emision_de_co2_del_sistema_nacional_interconectado_de_ecuador_-_informe_2019.pdf
  60. Mcallister, S., & Processes, C. (2011). Properties of Fuels. https://doi.org/10.1007/978-1-4419-7943-8
  61. Johnson, E. (2019b). Process technologies and projects for BiOLPG. Energies 12(2). https://doi.org/10.3390/en12020250
  62. Europe Liquid Gas. (2021). BIOLPG A Renewable Pathway towards 2050.
  63. Hopwood, L., Mitchell, E., & Sourmelis, S. (2019). Biopropane: Feedstocks, Feasibility and our Future Pathway. Recuperado de www.nnfcc.co.uk
  64. Suhag, M., Kumar, A., & Singh, J. (2020). Saccharification and fermentation of pretreated banana leaf waste for ethanol production. SN Applied Sciences, 2(8), 1–9. https://doi.org/10.1007/s42452-020-03215-x
  65. Young, S., & Fortey, E. (1902). The Propierties of Mixtures of the Lower Alcohols with Benzene and with Benzene and Water. Journal of the Chemical Society, 81, 739–752. https://doi.org/10.1039/CT9028100739
  66. IARC. (2017). IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS: BENZENE. 120. Recuperado de https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Benzene-2018
  67. Koczka, K., Mizsey, P., & Fonyo, Z. (2007). Rigorous modelling and optimization of hybrid separation processes based on pervaporation. Central European Journal of Chemistry, 5(4), 1124–1147. https://doi.org/10.2478/s11532-007-0050-8
  68. Eweremadu, C., & Rutto, H. (2010). Investigation of Heat Loss in Ethanol-Water Distillation Column with Direct Vapour Recompression Heat Pump. International Journal of Chemical and Molecular Engineering, 4(9), 548–549. scholar.waset.org/1307-6892/1577
  69. Kiss, A. A., & Smith, R. (2020). Rethinking energy use in distillation processes for a more sustainable chemical industry. Energy, 203. https://doi.org/10.1016/j.energy.2020.117788
  70. NETZSH. (2014). Thermal Insulation Materials. Analysing & Testing. www.netzsch.com
  71. La Hora. (2021, agosto 04). El subsidio por tanque de gas supera los $13. La Hora. Recuperado de https://www.lahora.com.ec/pais/el-subsidio-por-tanque-de-gas-supera-los-13/
  72. Gueddari-Aourir, A., García-Alaminos, A., García-Yuste, S., Alonso-Moreno, C., Canales-Vázquez, J., & Zafrilla, J. E. (2022). The carbon footprint balance of a real-case wine fermentation CO2 capture and utilization strategy. Renewable and Sustainable Energy Reviews, 157. https://doi.org/10.1016/j.rser.2021.112058
  73. Mir, A., Tabar, M., & Fakhr, S. E. (2019). Greenhouse Gas Emission Estimation by Life Cycle Assessment Approach in Petrochemical Industry. https://www.researchgate.net/publication/337227174
  74. Edwards, R., O’Connell, A., Padella, M., Giuntoli, J., Koeble, R., Bulgheroni, C., Marelli, L., & Lonza, L. (2019). Definition of input data to assess GHG default emissions from biofuels in EU legislation. https://doi.org/10.2760/69179
  75. Peng, P., Lan, Y., Liang, L., & Jia, K. (2021). Membranes for bioethanol production by pervaporation. Biotechnology for Biofuels, 14(1), 1–33. https://doi.org/10.1186/s13068-020-01857-y