Comportamiento del SDS localizado en la región interfacial del sistema agua/n-octano. Un estudio usando dinámica molecular

Contenido principal del artículo

José Gregorio Parra
Yosslen R. Aray

Resumen

En este trabajo, usando dinámica molecular se determinaron las propiedades interfaciales y el comportamiento del Dodecil Sulfato de Sodio (SDS) ubicado en la región interfacial de los sistemas vacío/agua y agua/n-octano. La tensión interfacial fue estimada con el modelo propuesto por Kirkwood y Buff [23]. A su vez, los espesores de película interfacial fueron determinados usando los criterios 10-90 y 90-90. Además, el área por molécula fue estimado con la variación de la presión superficial en función de la concentración del surfactante. En los sistemas vacío/SDS/agua, el área por molécula del SDS fue obtenida con dos procedimientos diferentes. Los valores fueron 53.3 Å2 y 54.3 Å2, respectivamente. Para los sistemas agua/n-octano y agua/SDS/n-octano, los espesores de película interfacial aumentan en función del número de moléculas de surfactantes presentes en la región interfacial. Los resultados obtenidos son consistentes con datos medidos por experimentación.

Descargas

La descarga de datos todavía no está disponible.

Metrics

Cargando métricas ...

Detalles del artículo

Cómo citar
Parra, J. G., & Aray, Y. R. (2016). Comportamiento del SDS localizado en la región interfacial del sistema agua/n-octano. Un estudio usando dinámica molecular. ACI Avances En Ciencias E Ingenierías, 8(1). https://doi.org/10.18272/aci.v8i14.279
Sección
SECCIÓN C: INGENIERÍAS
Biografía del autor/a

José Gregorio Parra, Universidad de Carabobo Facultad de Ciencias y Tecnología Dpto. de Química

Prof.  Agregado a dedicación exclusiva
Unidad de Fisicoquímica
Lab. de Química Computacional

Citas

[1] Myers, D. (2002). Surface activity and surfactant structures. Surfaces, Interfaces, and Colloids: Principles and Applications, Second Edition, 21-39.

[2] Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.

[3] Myers, D. (2005). Surfactant science and technology. John Wiley & Sons.

[4] Holmberg, K. (Ed.). (2002). Handbook of applied surface and colloid chemistry (Vol. 1). New York: Wiley.

[5] Rehfeld, S. J. (1967). Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces. The Journal of Physical Chemistry, 71(3), 738-745, DOI: 10.1021/j100862a039.

[6] Saien, J. & Akbari, S. (2006). Interfacial Tension of Toluene + Water + Sodium Dodecyl Sulfate from (20 to 50) ◦C and pH between 4 and 9. J. Chem. Eng. Data, 51(5), 1832-1835, DOI: 10.1021/je060204g.

[7] Hansen, M. & Short, D. (1990). Optimization study of octane-in-water emulsions by sedimentation field-flow fractionation. Journal of Chromatography, 517, 333-344.

[8] Tummala, N. R., & Striolo, A. (2008). Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. The Journal of Physical Chemistry B, 112(7), 1987-2000.

[9] Watry, M. R., & Richmond, G. L. (2000). Comparison of the adsorption of linear alkanesulfonate and linear alkylbenzenesulfonate surfactants at liquid interfaces. Journal of the American Chemical Society, 122(5),
875-883.

[10] Zhao, T., Xu, G., Yuan, S., Chen, Y., & Yan, H. (2010). Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. The Journal of Physical Chemistry B, 114(15), 5025-5033.

[11] Shi, L., Tummala, N. R., & Striolo, A. (2010). C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir, 26(8), 5462-5474.

[12] Yan, H., Guo, X. L., Yuan, S. L., & Liu, C. B. (2011). Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir, 27(10), 5762-5771.

[13] Shi, L., Tummala, N. R., & Striolo, A. (2010). C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir, 26(8), 5462-5474.

[14] Bresme, F., Chacón, E., Martínez, H., & Tarazona, P. (2011). Adhesive transitions in Newton black films: A computer simulation study. The Journal of chemical physics, 134(21), 214701.

[15] Jang, S. S., & Goddard, W. A. (2006). Structures and properties of newton black films characterized using molecular dynamics simulations. The Journal of Physical Chemistry B, 110(15), 7992-8001.

[16] Bruce, C. D., Senapati, S., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. The Journal of Physical Chemistry B, 106(42), 10902-10907.

[17] Bruce, C. D., Berkowitz,M. L., Perera, L.,& Forbes,M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of Physical Chemistry B, 106(15), 3788-3793.

[18] Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13), 1656-1676.

[19] Malde, A. K., Zuo, L., Breeze,M., Stroet,M., Poger, D., Nair, P. C., ... & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: version 1.0. Journal of chemical theory and computation, 7(12),
4026-4037.

[20] Hermans, J., Berendsen, H. J., Van Gunsteren, W. F., & Postma, J. P. (1984). A consistent empirical potential for water-protein interactions. Biopolymers, 23(8), 1513-1518.

[21] Geysermans, P., Elyeznasni, N., & Russier, V. (2005). Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations. The Journal of chemical physics, 123(20),
204711.

[22] Rowlinson, J. S., & Widom, B. (2013). Molecular theory of capillarity. Courier Corporation.

[23] Kirkwood, J. G.,& Buff, F. P. (1949). The statistical mechanical theory of surface tension. The Journal of Chemical Physics, 17(3), 338-343.

[24] Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem.Phys. 1950, 18, 817-829.

[25] Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 18(6), 817-829.

[26] Walton, J. P. R. B., & Gubbins, K. E. (1985). The pressure tensor in an inhomogeneous fluid of non-spherical molecules. Molecular Physics, 55(3), 679-688.

[27] Neyt, J. C., Wender, A., Lachet, V., Ghoufi, A., & Malfreyt, P. (2014). Quantitative Predictions of the Interfacial Tensions of Liquidâ˘A ¸SLiquid Interfaces through Atomistic and Coarse Grained Models. Journal of chemical theory and computation, 10(5), 1887-1899.

[28] Van Gunsteren, W. F., & Berendsen, H. J. C. (1987). Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, 24(682704), 13.

[29] Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. Journal
of computational chemistry, 25(13), 1656-1676.

[30] Bruce, C. D., Senapati, S., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. The Journal of Physical Chemistry
B, 106(42), 10902-10907.

[31] Bruce, C. D., Berkowitz,M. L., Perera, L.,& Forbes,M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of
Physical Chemistry B, 106(15), 3788-3793.

[32] Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 4(3), 435-447.

[33] Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718.

[34] Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 7(8), 306-317.

[35] Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1), 43-56.

[36] Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 81(8), 3684-3690.

[37] Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577-8593.

[38] Zhao, T., Xu, G., Yuan, S., Chen, Y., & Yan, H. (2010). Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. The Journal of Physical Chemistry B, 114(15), 5025-5033.

[39] Xu, J., Zhang, Y., Chen, H.,Wang, P.,Xie, Z., Yao, Y., ... & Zhang, J. (2013). Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. Journal of Molecular Structure,
1052, 50-56.

[40] Chen, Y., & Xu, G. (2013). Improvement of Ca 2+- tolerance by the introduction of EO groups for the anionic surfactants: Molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 424, 26-32.

[41] Mitrinovic, D. M., Tikhonov, A. M., Li, M., Huang, Z., & Schlossman, M. L. (2000). Noncapillary-wave structure at the water-alkane interface. Physical review letters, 85(3), 582.

[42] Riedleder, A. J., Kentish, S. E., Perera, J.M., & Stevens, G. W. (2007). Structural Investigation of a Water/n- Heptane Interface: A Molecular Dynamics Study. Solvent Extraction and Ion Exchange, 25(1), 41-52.

[43] Zhang, Y., Feller, S. E., Brooks, B. R., Pastor, R. W. (1995). Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water. J. Chem. Phys., 23, 10252-10266.