Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN C: INGENIERÍAS

Vol. 8 Núm. 1 (2016)

Comportamiento del SDS localizado en la región interfacial del sistema agua/n-octano. Un estudio usando dinámica molecular

DOI
https://doi.org/10.18272/aci.v8i14.279
Enviado
marzo 2, 2016
Publicado
2016-12-13

Resumen

En este trabajo, usando dinámica molecular se determinaron las propiedades interfaciales y el comportamiento del Dodecil Sulfato de Sodio (SDS) ubicado en la región interfacial de los sistemas vacío/agua y agua/n-octano. La tensión interfacial fue estimada con el modelo propuesto por Kirkwood y Buff [23]. A su vez, los espesores de película interfacial fueron determinados usando los criterios 10-90 y 90-90. Además, el área por molécula fue estimado con la variación de la presión superficial en función de la concentración del surfactante. En los sistemas vacío/SDS/agua, el área por molécula del SDS fue obtenida con dos procedimientos diferentes. Los valores fueron 53.3 Ã…2 y 54.3 Ã…2, respectivamente. Para los sistemas agua/n-octano y agua/SDS/n-octano, los espesores de película interfacial aumentan en función del número de moléculas de surfactantes presentes en la región interfacial. Los resultados obtenidos son consistentes con datos medidos por experimentación.

viewed = 1224 times

Citas

  1. Myers, D. (2002). Surface activity and surfactant structures. Surfaces, Interfaces, and Colloids: Principles and Applications, Second Edition, 21-39.
  2. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.
  3. Myers, D. (2005). Surfactant science and technology. John Wiley & Sons.
  4. Holmberg, K. (Ed.). (2002). Handbook of applied surface and colloid chemistry (Vol. 1). New York: Wiley.
  5. Rehfeld, S. J. (1967). Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces. The Journal of Physical Chemistry, 71(3), 738-745, DOI: 10.1021/j100862a039.
  6. Saien, J. & Akbari, S. (2006). Interfacial Tension of Toluene + Water + Sodium Dodecyl Sulfate from (20 to 50) â—¦C and pH between 4 and 9. J. Chem. Eng. Data, 51(5), 1832-1835, DOI: 10.1021/je060204g.
  7. Hansen, M. & Short, D. (1990). Optimization study of octane-in-water emulsions by sedimentation field-flow fractionation. Journal of Chromatography, 517, 333-344.
  8. Tummala, N. R., & Striolo, A. (2008). Role of counterion condensation in the self-assembly of SDS surfactants at the water-graphite interface. The Journal of Physical Chemistry B, 112(7), 1987-2000.
  9. Watry, M. R., & Richmond, G. L. (2000). Comparison of the adsorption of linear alkanesulfonate and linear alkylbenzenesulfonate surfactants at liquid interfaces. Journal of the American Chemical Society, 122(5),
  10. -883.
  11. Zhao, T., Xu, G., Yuan, S., Chen, Y., & Yan, H. (2010). Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. The Journal of Physical Chemistry B, 114(15), 5025-5033.
  12. Shi, L., Tummala, N. R., & Striolo, A. (2010). C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir, 26(8), 5462-5474.
  13. Yan, H., Guo, X. L., Yuan, S. L., & Liu, C. B. (2011). Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir, 27(10), 5762-5771.
  14. Shi, L., Tummala, N. R., & Striolo, A. (2010). C12E6 and SDS surfactants simulated at the vacuum-water interface. Langmuir, 26(8), 5462-5474.
  15. Bresme, F., Chacón, E., Martínez, H., & Tarazona, P. (2011). Adhesive transitions in Newton black films: A computer simulation study. The Journal of chemical physics, 134(21), 214701.
  16. Jang, S. S., & Goddard, W. A. (2006). Structures and properties of newton black films characterized using molecular dynamics simulations. The Journal of Physical Chemistry B, 110(15), 7992-8001.
  17. Bruce, C. D., Senapati, S., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. The Journal of Physical Chemistry B, 106(42), 10902-10907.
  18. Bruce, C. D., Berkowitz,M. L., Perera, L.,& Forbes,M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of Physical Chemistry B, 106(15), 3788-3793.
  19. Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13), 1656-1676.
  20. Malde, A. K., Zuo, L., Breeze,M., Stroet,M., Poger, D., Nair, P. C., ... & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: version 1.0. Journal of chemical theory and computation, 7(12),
  21. -4037.
  22. Hermans, J., Berendsen, H. J., Van Gunsteren, W. F., & Postma, J. P. (1984). A consistent empirical potential for water-protein interactions. Biopolymers, 23(8), 1513-1518.
  23. Geysermans, P., Elyeznasni, N., & Russier, V. (2005). Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations. The Journal of chemical physics, 123(20),
  24. Rowlinson, J. S., & Widom, B. (2013). Molecular theory of capillarity. Courier Corporation.
  25. Kirkwood, J. G.,& Buff, F. P. (1949). The statistical mechanical theory of surface tension. The Journal of Chemical Physics, 17(3), 338-343.
  26. Irving, J. H.; Kirkwood, J. G. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem.Phys. 1950, 18, 817-829.
  27. Irving, J. H., & Kirkwood, J. G. (1950). The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. The Journal of chemical physics, 18(6), 817-829.
  28. Walton, J. P. R. B., & Gubbins, K. E. (1985). The pressure tensor in an inhomogeneous fluid of non-spherical molecules. Molecular Physics, 55(3), 679-688.
  29. Neyt, J. C., Wender, A., Lachet, V., Ghoufi, A., & Malfreyt, P. (2014). Quantitative Predictions of the Interfacial Tensions of Liquidâ˘A ¸SLiquid Interfaces through Atomistic and Coarse Grained Models. Journal of chemical theory and computation, 10(5), 1887-1899.
  30. Van Gunsteren, W. F., & Berendsen, H. J. C. (1987). Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, 24(682704), 13.
  31. Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. Journal
  32. of computational chemistry, 25(13), 1656-1676.
  33. Bruce, C. D., Senapati, S., Berkowitz, M. L., Perera, L., & Forbes, M. D. (2002). Molecular dynamics simulations of sodium dodecyl sulfate micelle in water: the behavior of water. The Journal of Physical Chemistry
  34. B, 106(42), 10902-10907.
  35. Bruce, C. D., Berkowitz,M. L., Perera, L.,& Forbes,M. D. (2002). Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution. The Journal of
  36. Physical Chemistry B, 106(15), 3788-3793.
  37. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 4(3), 435-447.
  38. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718.
  39. Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 7(8), 306-317.
  40. Berendsen, H. J., van der Spoel, D., & van Drunen, R. (1995). GROMACS: a message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1), 43-56.
  41. Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 81(8), 3684-3690.
  42. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577-8593.
  43. Zhao, T., Xu, G., Yuan, S., Chen, Y., & Yan, H. (2010). Molecular dynamics study of alkyl benzene sulfonate at air/water interface: effect of inorganic salts. The Journal of Physical Chemistry B, 114(15), 5025-5033.
  44. Xu, J., Zhang, Y., Chen, H.,Wang, P.,Xie, Z., Yao, Y., ... & Zhang, J. (2013). Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. Journal of Molecular Structure,
  45. , 50-56.
  46. Chen, Y., & Xu, G. (2013). Improvement of Ca 2+- tolerance by the introduction of EO groups for the anionic surfactants: Molecular dynamics simulation. Colloids and Surfaces A: Physicochemical and Engineering
  47. Aspects, 424, 26-32.
  48. Mitrinovic, D. M., Tikhonov, A. M., Li, M., Huang, Z., & Schlossman, M. L. (2000). Noncapillary-wave structure at the water-alkane interface. Physical review letters, 85(3), 582.
  49. Riedleder, A. J., Kentish, S. E., Perera, J.M., & Stevens, G. W. (2007). Structural Investigation of a Water/n- Heptane Interface: A Molecular Dynamics Study. Solvent Extraction and Ion Exchange, 25(1), 41-52.
  50. Zhang, Y., Feller, S. E., Brooks, B. R., Pastor, R. W. (1995). Computer simulation of liquid/liquid interfaces. I. Theory and application to octane/water. J. Chem. Phys., 23, 10252-10266.