Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio


Vol. 11 Núm. 2 (2019)

Distribución del 1-butanol y 2-butanol en los sistemas agua/n-octano y agua/Dodecil ´Sulfato de Sodio (SDS)/n-octano usando dinámica molecular. Parte II. Uso de las herramientas gmx-density y gmx-densmap

noviembre 13, 2018


En este trabajo, la distribución de las moléculas de 1-butanol y 2-butanol en los sistemas agua/n-octano y agua/SDS/n-octano fue determinada usando las herramientas gmx-density y gmx-densmap del programa gromacs con la finalidad de complementar a nivel computacional el comportamiento experimental estos co-surfactantes cuando están localizados en la región interfacial de estos sistemas. Los modelos de energía potencial GROMOS53A6 y SPC fueron utilizados para describir a las moléculas de 1-butanol, 2-butanol, SDS y agua, respectivamente. Estos modelos fueron capaces de predecir las propiedades interfaciales del sistema agua/n-octano y el área por molécula del Dodecil Sulfato de Sodio en la interfaz agua/n-octano de forma consistente. Finalmente, los perfiles y mapas de densidad demuestran que las moléculas de alcohol y SDS coexisten en la región interfacial del sistema agua/n-octano favoreciendo la estabilidad de la monocapa de surfactante y la película interfacial. viewed = 722 times


  1. Myers, D. (2002). Surface activity and surfactant structures. Surfaces, Interfaces, and Colloids: Principles and Applications, Second Edition, 21-39.
  2. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena. John Wiley & Sons.
  3. Myers, D. (2005). Surfactant science and technology. John Wiley & Sons.
  4. Holmberg, K. (2002). Handbook of applied surface and colloid chemistry (Vol. 1). New York: John Wiley & Sons..
  5. Prosser, A. J., & Franses, E. I. (2001). Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 178(1-3), 1-40.
  6. Shah, D. O. (1998). Monolayers: Quarter Century Progress at the University of Florida. Micelles, Microemulsions, and Monolayers, 1.
  7. Ulman, A. (2013). An Introduction to Ultrathin Organic Films: From Langmuir-Blodgett to Self-Assembly. Academic press.
  8. Petersen, K. S., & Christensen, P. L. (2007). Phase Behavior of Petroleum Reservoir Fluids, CRC Press, Boca Raton, London and New York.
  9. Maag, H. (1984). Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. Journal of the American Oil Chemists Society, 61(2), 259-267.
  10. Ikeda, S., Ozeki, S., & Hayashi, S. (1980). Size and shape of charged micelles of ionic surfactants in aqueous salt solutions. Biophysical chemistry, 11(3-4), 417-423.
  11. Hayter, J. B., & Penfold, J. (1981). Self-consistent structural and dynamic study of concentrated micelle solutions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 77(8), 1851-1863.
  12. Fernandez, P., Schrodle, S., Buchner, R., & Kunz, W. (2003). Micelle and solvent relaxation in aqueous sodium dodecylsulfate solutions. ChemPhysChem, 4(10), 1065-1072.
  13. Valkovska, D. S., Shearman, G. C., Bain, C. D., Darton, R. C., & Eastoe, J. (2004). Adsorption of ionic surfactants at an expanding air-water interface. Langmuir, 20(11), 4436-4445.
  14. Taylor, D. J. F., Thomas, R. K., & Penfold, J. (2002). The adsorption of oppositely charged polyelectrolyte/surfactant mixtures: neutron reflection from dodecyl trimethylammonium bromide and sodium poly (styrene sulfonate) at the air/water interface. Langmuir, 18(12), 4748-4757.
  15. Li, Z. X., Dong, C. C., & Thomas, R. K. (1999). Neutron reflectivity studies of the surface excess of gemini surfactants at the air-water interface. Langmuir, 15(13), 4392-4396.
  16. Reiss-Husson, F., & Luzzati, V. (1964). The structure of the micellar solutions of some amphiphilic compounds in pure water as determined by absolute small-angle X-ray scattering techniques. The Journal of Physical Chemistry, 68(12), 3504-3511.
  17. Rohde, A., & Sackmann, E. (1979). Quasielastic light-scattering studies of micellar sodium dodecyl sulfate solutions at the low concentration limit. Journal of Colloid and Interface Science, 70(3), 494-505.
  18. Jusufi, A., LeBard, D. N., Levine, B. G., & Klein, M. L. (2012). Surfactant concentration effects on micellar properties. The Journal of Physical Chemistry B, 116(3), 987-991.
  19. Vollhardt, D., & Emrich, G. (2000). Coadsorption of sodium dodecyl sulfate and medium-chain alcohols at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 161(1), 173-182.
  20. Srinivasan, V., & Blankschtein, D. (2003). Effect of Counterion Binding on Micellar Solution Behavior: 1. Molecular-Thermodynamic Theory of Micellization of Ionic Surfactants. Langmuir, 19(23), 9932-9945.
  21. Zhang, S., Zhu, P., Sun, Y., Yang, Y., Cao, X., Song, X., & Li, Y. (2014). Study of the molecular array behaviour of laurel alkanolamide at the oil-water interface and the high interfacial activity enhanced by an inherent synergistic effect. RSC Advances, 4(79), 41831-41837.
  22. Chai, J. L., Wu, Y. T., Li, X. Q., Yang, B., & Lu, J. J. (2011). Effect of oil/water ratios on the phase behavior and the solubilization ability of microemulsion systems containing sodium dodecyl sulfate. Journal of Solution Chemistry, 40(11), 1889-1898.
  23. Gunaseelan, K., Umlong, I. M., Mukhim, T., & Ismail, K. (2003). Electrical conductance behavior of oil-in-water microemulsions stabilized by sodium dodecyl sulfate and 1-butanol. Langmuir, 19(18), 7276-7281.
  24. Salager, J. L., Antón, R. E., Sabatini, D. A., Harwell, J. H., Acosta, E. J., & Tolosa, L. I. (2005). Enhancing solubilization in microemulsions-state of the art and current trends. Journal of surfactants and detergents, 8(1), 3-21.
  25. Salager, J. L., Forgiarini, A. M., & Bullón, J. (2013). How to attain ultralow interfacial tension and three-phase behavior with surfactant formulation for enhanced oil recovery: a review. Part 1. Optimum formulation for simple surfactant-oil-water ternary systems. Journal of Surfactants and Detergents, 16(4), 449-472.
  26. Baviere, M., Schechter, R., & Wade, W. (1981). The influence of alcohols on microemulsion composition. Journal of Colloid and Interface Science, 81(1), 266-279.
  27. Kahlweit, M., Strey, R., & Busse, G. (1991). Effect of alcohols on the phase behavior of microemulsions. The Journal of Physical Chemistry, 95(13), 5344-5352.
  28. Jones, S. C., & Dreher, K. D. (1976). Cosurfactants in micellar systems used for tertiary oil recovery. Society of petroleum engineers journal, 16(03), 161-167.
  29. Jang, S. S., Lin, S. T., Maiti, P. K., Blanco, M., Goddard, W. A., Shuler, P., & Tang, Y. (2004). Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate. The Journal of Physical Chemistry B, 108(32), 12130-12140.
  30. Chanda, J., & Bandyopadhyay, S. (2006). Molecular dynamics study of surfactant monolayers adsorbed at the oil/water and air/water interfaces. The Journal of Physical Chemistry B, 110(46), 23482-23488.
  31. Wu, R., Deng, M., Kong, B., Wang, Y., & Yang, X. (2009). Molecular dynamics simulations of ammonium surfactant monolayers at the heptane/water interface. The Journal of Physical Chemistry B, 113(38), 12680-12686.
  32. Qu, G., Xue, C., Zhang, M., Liang, S., Han, Y., & Ding, W. (2016). Molecular dynamics simulation of sulfobetaine-type zwitterionic surfactants at the decane/water interface: structure, interfacial properties. Journal of Dispersion Science and Technology, 37(12), 1710-1717.
  33. Mills, A. J., Wilkie, J., & Britton, M. M. (2014). NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion. The Journal of Physical Chemistry B, 118(36), 10767-10775.
  34. Parra, J., & Aray, Y. (2016). Comportamiento del SDS localizado en la región interfacial agua/n-octano. Un estudio usando dinámica molecular, ACI Avances en Ciencias e Ingenierías, 8(14), 98-110.
  35. Wang, L., Hu, Y., Liu, R., Liu, J., & Sun, W. (2017). Synergistic adsorption of DDA/alcohol mixtures at the air/water interface: A molecular dynamics simulation. Journal of Molecular Liquids, 243, 1-8.
  36. Liu, Z. Y., Xu, Z., Zhou, H., Wang, Y., Liao, Q., Zhang, L., & Zhao, S. (2017). Interfacial behaviors of betaine and binary betaine/carboxylic acid mixtures in molecular dynamics simulation. Journal of Molecular Liquids, 240, 412-419.
  37. Domínguez, H. (2006). Computer studies on the effects of long chain alcohols on sodium dodecyl sulfate (SDS) molecules in SDS/dodecanol and SDS/hexadecanol monolayers at the air/water interface. The Journal of Physical Chemistry B, 110(26), 13151-13157.
  38. Méndez-Bermúdez, J. G., & Dominguez, H. (2016). Structural changes of a sodium dodecyl sulfate (SDS) micelle induced by alcohol molecules. Journal of molecular modeling, 22(1), 33.
  39. Oostenbrink, C., Villa, A., Mark, A. E., & Van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13), 1656-1676.
  40. Berendsen, H. J., Postma, J. P., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In Intermolecular forces (pp. 331-342). Springer, Dordrecht.
  41. Frenkel, D.; & Smith, B. (1996). Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, Inc: San Diego.
  42. Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: version 1.0. Journal of chemical theory and computation, 7(12), 4026-4037.
  43. Kirkwood, J. G., & Buff, F. P. (1949). The statistical mechanical theory of surface tension. The Journal of Chemical Physics, 17(3), 338-343.
  44. Neyt, J. C., Wender, A., Lachet, V., Ghoufi, A., & Malfreyt, P. (2014). Quantitative Predictions of the Interfacial Tensions of Liquid-Liquid Interfaces through Atomistic and Coarse Grained Models. Journal of chemical theory and computation, 10(5), 1887-1899.
  45. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4(1), 17.
  46. Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of chemical theory and computation, 4(3), 435-447.
  47. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: fast, flexible, and free. Journal of computational chemistry, 26(16), 1701-1718.
  48. Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual, 7(8), 306-317.
  49. Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1), 014101.
  50. Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 81(8), 3684-3690.
  51. Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: a linear constraint solver for molecular simulations. Journal of computational chemistry, 18(12), 1463-1472.
  52. Hockney, R. W., Goel, S. P., & Eastwood, J. W. (1974). Quiet high-resolution computer models of a plasma. Journal of Computational Physics, 14(2), 148-158.
  53. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of chemical physics, 103(19), 8577-8593.
  55. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of molecular graphics, 14(1), 33-38.
  56. Cordeiro, N. (2003). Interfacial Tension Behaviour of Water/Hydrocarbon Liquid-Liquid Interfaces: A Molecular Dynamics Simulation. Molecular Simulation, 29(12), 817-827.
  57. Aray, Y., Parra, J. G., Jiménez, D. M., Paredes, R., Martiz, A., Samaniego, S., & Paredes, C. (2017). Exploring the effect of the O-(1-heptylnonyl) benzene sulfonate surfactant on the nature of the linear hydrocarbons/water interface by means of an atomistic molecular dynamics simulation. Journal of Computational Methods in Sciences and Engineering, 17(1), 39-53.
  58. Aveyard, R., & Haydon, D. A. (1973). An introduction to the principles of surface chemistry. CUP Archive.
  59. Goebel, A., & Lunkenheimer, K. (1997). Interfacial tension of the water/n-alkane interface. Langmuir, 13(2), 369-372.
  60. Lu, J. R., Marrocco, A., Su, T. J., Thomas, R. K., & Penfold, J. (1993). Adsorption of dodecyl sulfate surfactants with monovalent metal counterions at the air-water interface studied by neutron reflection and surface tension. Journal of colloid and interface science, 158(2), 303-316.
  61. Rehfeld, S. J. (1967). Adsorption of sodium dodecyl sulfate at various hydrocarbon-water interfaces. The Journal of Physical Chemistry, 71(3), 738-745.