Changes in rainfall patterns on the upper Ecuadorian Andean mountains: Analysis of extreme precipitation, ENSO effects and shifts of annual rainfall variation

Contenido principal del artículo

Paulina Rosana Lima Guamán
Jorge Luis Santamaría Carrera
Margarita Flor

Resumen

Rainfall in the upstream drainage area of the Ecuadorian Andean Mountains (EAM) is an important source of water supply in populated areas. Managing water resource projects depend on rainfall-runoff variation. Even though, it is difficult to understand the mechanism that controls rainfall variation because of the influence of several global and local hydrological processes, this type of research is needed to improve the management of water resources. Understanding these processes is complex due to inaccessibility to these remote zones leading to inefficacy in the monitoring of these gauge stations. Furthermore, there are reports that exposed that climatic anomalies are affecting rainfall-runoff processes around the world. These climate changes cause two main problems in urban infrastructure. First, the occurrence of extreme precipitation events increasing the risk of flooding. Second, changes on annual rainfall variation that could lead to water scarcity in the management of water resource projects. This study focuses on improving the understanding of rainfall trends at EAM and its implications in the management of water resources. The results indicate that 71% of extreme precipitation events were registered in the second period of the last twenty years (1995 – 2015) with severe short rainfall events, during ENSO years in the EAM, threatening hydraulic facilities.

Detalles del artículo

Cómo citar
Lima Guamán, P. R., Santamaría Carrera, J. L., & Flor, M. (2020). Changes in rainfall patterns on the upper Ecuadorian Andean mountains: Analysis of extreme precipitation, ENSO effects and shifts of annual rainfall variation. ACI Avances En Ciencias E Ingenierías, 11(3). https://doi.org/10.18272/aci.v11i3.1067
Sección
SECCIÓN C: INGENIERÍAS
Biografía del autor/a

Paulina Rosana Lima Guamán, UNIVERSIDAD CENTRAL DEL ECUADOR

Paulina Lima is a Professor of Hydraulic Structures at the Central University of Ecuador (UCE) with research interest in the management of sediment transport in hydraulic structures. She earned her BS in civil engineering from the UCE, an MS from the National Polytechnic School of Ecuador, an MS from the University of Liege in Belgium, and currently she is a third year PhD student at University of New Mexico under the guidance of Professor Mark Stone and Professor Jose Cerrato. In Ecuador, Paulina has been working on the design of water management. She has been working on hydraulic simulation programs using a 3D computational fluid dynamics model (CFD) ANSYS to simulate water bottom intake structures in Spain, using 2DH model SISBAHIA to simulate Ecuadorian tsunami events in Brazil, and now she is working on sediment transport and water quality models to understand iron concentration in rivers. Her PhD. studies and research are part of a collaborative program between the UCE and the UNM.

Jorge Luis Santamaría Carrera, UNIVERSIDAD CENTRAL DEL ECUADOR

PROFESOR TITULAR DE LA CARRERA DE INGENIERÍA CIVIL DE LA FACULTAD DE INGENIERÍA, CIENCIAS FÍSICAS Y MATEMÁTICA.

Margarita Flor, UNIVERSIDAD CENTRAL DEL ECUADOR

PROFESOR TITULAR DE LA CARRERA DE INGENIERÍA CIVIL DE LA FACULTAD DE INGENIERÍA, CIENCIAS FÍSICAS Y MATEMÁTICA.

Citas

[1] Veettil, B. K., Maier, É. L. B., Bremer, U. F., & de Souza, S. F. (2014). Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Climate dynamics, 43(12), 3439-3448. doi: https://doi.org/10.1007/s00382-014-2114-8

[2] Grimm, A. M., Barros, V. R., & Doyle, M. E. (2000). Climate variability in southern South America associated with El Niño and La Niña events. Journal of Climate, 13(1), 35-58.

[3] Trenberth, K. E. (1997). The definition of el nino. Bulletin of the American Meteorological Society, 78(12), 2771–2777.

[4] Vicente-Serrano, S. M., Aguilar, E., Martínez, R., Martín-Hernández, N., Azorin-Molina, C., Sanchez-Lorenzo, A., … Nieto, R. (2017). The complex influence of ENSO on droughts in Ecuador. Climate Dynamics, 48(1–2), 405–427. doi: https://doi.org/10.1007/s00382-016-3082-y

[5] Rabatel, A., Francou, B., Soruco, A., Gomez, J., Cáceres, B., Ceballos, J. L., … Wagnon, P. (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere, 7(1), 81–102. doi: https://doi.org/10.5194/tc-7-81-2013

[6] Ochoa, A., Campozano, L., Sánchez, E., Gualán, R., & Samaniego, E. (2016). Evaluation of downscaled estimates of monthly temperature and precipitation for a Southern Ecuador case study. International Journal of Climatology, 36(3), 1244–1255. doi: https://doi.org/10.1002/joc.4418

[7] INAMHI. (2016). BOLETIN CLIMATOLOGICO ANUAL 2015 (Climate National Report No. 002) (p. 31). Ecuador: INAMHI. Retrieved from http://www.serviciometeorologico.gob.ec/clima/

[8] Celleri, R., Willems, P., Buytaert, W., & Feyen, J. (2007). Space–time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrological Processes, 21(24), 3316–3327. doi: https://doi.org/10.1002/hyp.6575

[9] Buytaert, W., Celleri, R., Willems, P., Bièvre, B. D., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3–4), 413–421. doi: https://doi.org/10.1016/j.jhydrol.2006.02.031

[10] Fernández, A., & Mark, B. G. (2016). Modeling modern glacier response to climate changes along the Andes Cordillera: A multiscale review: MODELING ANDEAN GLACIERS. Journal of Advances in Modeling Earth Systems, 8(1), 467–495. doi: https://doi.org/10.1002/2015MS000482

[11] Pepin, E., Guyot, J. L., Armijos, E., Bazan, H., Fraizy, P., Moquet, J. S., … Vauchel, P. (2013). Climatic control on eastern Andean denudation rates (Central Cordillera from Ecuador to Bolivia). Journal of South American Earth Sciences, 44, 85–93. doi: https://doi.org/10.1016/j.jsames.2012.12.010

[12] Basantes-Serrano, R., Rabatel, A., Francou, B., Vincent, C., Maisincho, L., CáCeres, B., … Alvarez, D. (2016). Slight mass loss revealed by reanalyzing glacier mass-balance observations on Glaciar Antisana 15α (inner tropics) during the 1995–2012 period. Journal of Glaciology, 62(231), 124–136. doi: https://doi.org/10.1017/jog.2016.17

[13] Smith, J. A., Mark, B. G., & Rodbell, D. T. (2008). The timing and magnitude of mountain glaciation in the tropical Andes. Journal of Quaternary Science, 23(6–7), 609–634. doi: https://doi.org/10.1002/jqs.1224

[14] Wagnon, P., Lafaysse, M., Lejeune, Y., Maisincho, L., Rojas, M., & Chazarin, J. P. (2009). Understanding and modeling the physical processes that govern the melting of snow cover in a tropical mountain environment in Ecuador. Journal of Geophysical Research, 114(D19). doi: https://doi.org/10.1029/2009JD012292

[15] Committee on Extreme Weather Events and Climate Change Attribution, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies, & National Academies of Sciences, E., and Medicine. (2016). Attribution of Extreme Weather Events in the Context of Climate Change. Washington, DC: National Academies Press.

[16] Chow, V. T. (1988.). Applied hydrology. New York : McGraw-Hill.

[17] CPE INEN. (1992). Código Ecuatoriano de la Construcción C.E.C: Normas para estudio y diseño de sistemas de agua potable y disposición de aguas residuales para poblaciones mayores a1000 habitantes.

[18] Guevara Espín, K. M. (2010). Empresa metropolitana de alcantarillado y agua potable de Quito (EMAAP-QUITO): Propuesta de estrategias comunicacionales para involucrar a la ciudadanía quiteña, en la prevención de los eventos adversos que trae consigo la estación invernal (B.S. thesis). Quito: Universidad de las Américas, 2010.

[19] Moquet, J.-S., Crave, A., Viers, J., Seyler, P., Armijos, E., Bourrel, L., … Guyot, J.-L. (2011). Chemical weathering and atmospheric/soil CO2 uptake in the Andean and Foreland Amazon basins. Chemical Geology, 287(1–2), 1–26. doi: https://doi.org/10.1016/j.chemgeo.2011.01.005

[20] Cárdenas, M. L., Gosling, W. D., Sherlock, S. C., Poole, I., Pennington, R. T., & Mothes, P. (2011). The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change. Science, 331(6020), 1055–1058.

[21] Heglund, J. M. (2010). Can Climate Change Affect Sediment Transport in a Watershed? In Can Climate Change Affect Sediment Transport in a Watershed? Reston, VA; American Society of Civil Engineers; 2010.