Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN A: CIENCIAS EXACTAS

Vol. 4 Núm. 1 (2012)

Estudio DFT del efecto en la energía superficial de sobrecapas metálicas en semiconductores

DOI
https://doi.org/10.18272/aci.v4i1.76
Enviado
agosto 12, 2015

Resumen

Se calculó teóricamente la energía superficial de Ag, Pb, Ge y Si de los sistemas formados por capas metálicas (Ag y Pb) en los semiconductores (Ge y Si), respectivamente para formar los sistemas Ag/Ge y Pb/Si. Para ello, se utilizó el funcional Perdew Wang (PW91) dentro de una aproximación DFT. Para modelar el bulk y las superficies (111) de Ag, Pb, Ge y Si se utilizó el modelo periódico de slab. Los modelos de los semiconductores se construyeron con 12, 11, 10, 9, 8, 7 y 6 capas, los de metales con 1, 2, 3, 4, 5 y 6 capas y para estudiar las monocapas metálicas en los semiconductores se empleó un modelo de 12 capas en total: SC12-nMn (donde SC es Ge o Si; M es Ag y Pb, respectivamente y n es el número de capas). Conforme a los resultados obtenidos, se concluyó que el metal modifica la energía superficial de los semiconductores, y éstos a su vez modifican la energía superficial del metal. Los valores de los sistemas SC12-nMn oscilan en forma similar a la de los semiconductores, aunque con valores intermedios entre el metal y el semiconductor. Estos resultados indican que si el número de monocapas metálicas en un semiconductor se puede controlar, también se puede controlar la energía de superficie del sistema.

viewed = 981 times

Citas

  1. Chen, J., Menning, C., and Zellner, M. 2008. "Monolayer Bimetallic Surfaces: Experimental and Theoretical Studies of Trends in Electronic and Chemical Properties". Surface Science Reports. 63, 201-254.
  2. Sinfelt, J. 1983. "Bimetallic Catalysts: Discoveries, Concepts and Applications", JohnWiley and Sons.
  3. Bartholomew, C. and Farrauto, R. 2006. "Fundamentals of Industrial Catalytic Processes".
  4. Campbell, C. 1990. "Bimetallic Surface Chemistry". Annual Review of Physical Chemistry. 41, 775-837.
  5. Rodriguez, J. 1996. "Physical and Chemical Properties of Bimetallic Surfaces". Surface Science Reports. 24, 225-287.
  6. Goodman, D. 1996. "Correlations Between Surface Science Models and "Real-World" Catalysts". Journal of Physical Chemistry. 100, 13090-13102.
  7. Kandel, D. and Kaxiras, E. 1999. "The Surfactant Effect in Semiconductor Thin-Film Growth". Solid State Physics. 54, 219-250, A250, B250, C250, D250, 251-262.
  8. Wei, C. and Chou, M. 2003. "Effects of the Substrate on Quantum Well States: A First-Principles Study for Ag/Fe(100)". Physical Review B. 68, 2-6.
  9. Bauer, E. 1958. "Phänomenologische Theorie der Kristallabscheidung an Oberflächen". I. Zeitschrift für Kristallographie. 110, 372-394.
  10. Krupski, A. 2011. "Growth of Sn on Mo(110) Studied by AES and STM". Surface Science. 605, 1291-1297.
  11. Mathew, S., Satpati, B., Joseph, B., and Dev, B. 2005. "Role of Pb for Ag Growth on H-Passivated Si(100) Surfaces". Applied Surface Science. 249, 31-37.
  12. Roesler, J., Miller, T., and Chiang, T.-C. 1996. "Structure Determination of Ordered 1/3 = Monolayer Pb on Ge(111) by Photoelectron Holography". Surface Science. 348, 161-167.
  13. Lay, G., Hricovini, K., and Bonnet, J. 1989. "Synchrotron Radiation Investigation and Surface Spectroscopy Studies of Prototypical Systems: Lead Semiconductor Interfaces". Applied Surface Science. 41-42, 25-37.
  14. Saranin, A. e. a. 1999. "Ag-Induced Structural Transformations on Si(111): Quantitative Investigation of the Si Mass Transport". Surface Science. 429, 127-132.
  15. Hirayama, H., Komizo, T., Kawata, T., and Takayanagi, K. 2001. "Optical Second Harmonic Generation Spectrum of Ag/Si(111) Reconstructed Surfaces". Physical Review B. 63, 155413-155418.
  16. Yamamoto, Y. 1992. "Observation of Superstructures Induced by Ag Adsorption on a Si(110) Surface". Japanese Journal of Applied Physics. 31, 2241-2242.
  17. Deng, D. and Suzuki, T. 2005. "Nucleation and Growth of Si(111)-3x3-Ag Investigated in Situ Using Second Harmonic Generation". Physical Review B. 72, 085308.
  18. Tong, X. et.al. 1998. "STM Observations of Ag Adsorption on the Si(111) -√3x √3-Ag Surface at Low Temperatures". Surface Science. 408, 146-159.
  19. Zhang, Z., Niu, Q., and Shih, C.-K. 1998. " "˜Electronic Growth"™ of Metallic Overlayers on Semiconductor Substrates". Physical Review Letters. 80, 5381-5384.
  20. Basile, L., Hong, H., Czoschke, P., and Chiang, T. C. 2004. "X-Ray Studies of the Growth of Smooth Ag Films on Ge(111)-c(2x8)". Applied Physics Letters. 84, 4995.
  21. Hong, H. et.al. 2003. "Alternating Layer and Island Growth of Pb on Si by Spontaneous Quantum Phase Separation". Physical Review Letters. 90, 1-4.
  22. Jurczyszyn, L., Radny, M.W., and Smith, P. 2011. "Pb Chain-Like Structures on the Clean Si(001) Surface U° a DFT Study". Surface Science. 605, 1881-1888.
  23. Li, W.-J. e. a. 2011. "Growth and Stability of Ultra-Thin Pb Films on Pb/Si(111)-α-√3x √3". Surface Rev iew and Letters. 18, 77-82.
  24. <http://www.webelements.com> webelements.at
  25. Hohenberg, P. 1964. "Inhomogeneous Electron Gas". Physical Review. 136, B864-B871.
  26. Kohn, W. and Sham, L. 1965. "Self-Consistent Equations Incluiding Exchange and Correlation Effects". Physical Review. 140, A1133-A1138.
  27. Kresse, G. and Furthmüller, J. 1996. "Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set". Physical review. B, Condensed matter. 54, 11169-11186.
  28. Perdew, J. and Wang, Y. 1992. "Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy". Physical Review B. 45, 13244-13249.
  29. Blöchl 1994. "P.E. Projector Augmented-Wave Method". Physical Review B. 50, 17953-17979.
  30. Kresse, G. and Joubert, D. 1999. "From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method". Physical Review B. 59, 1758-1775.
  31. Monkhorst, H. and Pack, J. 1976. "Special Points for Brillouin-Zone Integrations". Physical Review B. 13, 5188-5192.
  32. Methfessel, M. and Paxton, A. 1989. "High-Precision Sampling for Brillouin-Zone Integration in Metals". Physical Review B. 40, 3616-3621.