Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

SECCIÓN C: INGENIERÍAS

Vol. 16 Núm. 1 (2024)

Los indicadores de desempeño de la distribución urbana de mercancías: Un análisis bibliométrico

DOI
https://doi.org/10.18272/aci.v16i1.3226
Enviado
enero 18, 2024
Publicado
2024-03-18

Resumen

Este artículo presenta una revisión sistemática de la literatura sobre Distribución Urbana de Mercancías (DUM) en logística de última milla, utilizando la metodología PRISMA y un análisis bibliométrico basado en análisis estadísticos de calidad y cantidad. Se realizaron búsquedas en bases de datos como Scopus y Web of Science, identificando tendencias, coautorías y patrones a lo largo del tiempo. Se destaca un crecimiento anual en las publicaciones, junto con palabras clave recurrentes, autores influyentes y revistas relevantes en el ámbito de las entregas urbanas. Se propone una taxonomía de clasificación con diez diferentes tipos de indicadores de desempeño en la DUM con tres métodos diferentes de evaluación y su campo de aplicación. Este análisis cuantitativo y cualitativo proporciona una base sólida para futuras investigaciones en logística urbana y distribución de mercancías

viewed = 283 times

Citas

  1. De Assis, T. F., De Abreu, V. H. S., Da Costa, M. G. y D’Agosto, M. de A. (2022). Methodology for prioritizing best practices applied to the sustainable last mile—The case of a brazilian parcel delivery service company. Sustainability, 14(7), 3812. doi: https://doi.org/10.3390/su14073812
  2. Liu, D., Deng, Z., Zhang, W., Wang, Y. y Kaisar, E. I. (2021). Design of sustainable urban electronic grocery distribution network. Alexandria Engineering Journal, 60(1), 145–157. doi: https://doi.org/10.1016/j.aej.2020.06.051
  3. Kunnapapdeelert, S., Johnson, J. V. y Phalitnonkiat, P. (2022). Green last-mile route planning for efficient e-commerce distribution. Engineering Management in Production and Services, 14(1), 1–12. doi: https://doi.org/10.2478/emj-2022-0001
  4. Lin, Y., Wang, Y., Lee, L. H. y Chew, E. P. (2022). Profit-maximizing parcel locker location problem under threshold Luce model. Transportation Research Part E: Logistics and Transportation Review, 157, 102541. doi: https://doi.org/10.1016/j.tre.2021.102541
  5. Ensafian, H., Zare Andaryan, A., Bell, M. G. H., Glenn Geers, D., Kilby, P. y Li, J. (2023). Cost-optimal deployment of autonomous mobile lockers co-operating with couriers for simultaneous pickup and delivery operations. Transportation Research Part C: Emerging Technologies, 146, 103958. doi: https://doi.org/10.1016/j.trc.2022.103958
  6. Woody, M., Craig, M. T., Vaishnav, P. T., Lewis, G. M. y Keoleian, G. A. (2022). Optimizing future cost and emissions of electric delivery vehicles. Journal of Industrial Ecology, 26(3), 1108–1122. doi: https://doi.org/10.1111/jiec.13263
  7. González-Varona, J. M., Villafáñez, F., Acebes, F., Redondo, A. y Poza, D. (2020). Reusing newspaper kiosks for last-mile delivery in urban areas. Sustainability, 12(22), 9770. doi: https://doi.org/10.3390/su12229770
  8. Kaszubowski, D. (2019). A method for the evaluation of urban freight transport models as a tool for improving the delivery of sustainable urban transport policy. Sustainability, 11(6), 1535. doi: https://doi.org/10.3390/su11061535
  9. Reyes-Rubiano, L., Serrano-Hernandez, A., Montoya-Torres, J. R. y Faulin, J. (2021). The sustainability dimensions in intelligent urban transportation: a paradigm for smart cities. Sustainability, 13(19), 10653. doi: https://doi.org/10.3390/su131910653
  10. Otte, T. y Meisen, T. (2021). A reference framework for the performance-based decision support of city authorities in urban freight transport. International Conference on ICT for Smart Society (ICISS), 1–7. doi: https://doi.org/10.1109/ICISS53185.2021.9533210
  11. Galati, A., Giacomarra, M., Concialdi, P. y Crescimanno, M. (2021). Exploring the feasibility of introducing electric freight vehicles in the short food supply chain: A multi-stakeholder approach. Case Studies on Transport Policy, 9(2), 950–957. doi: https://doi.org/10.1016/j.cstp.2021.04.015
  12. Zhang, R., Dou, L., Xin, B., Chen, C., Deng, F. y Chen, J. (2023). A review on the truck and drone cooperative delivery problem. Unmanned Systems, 1–25. doi: https://doi.org/10.1142/S2301385024300014
  13. Nenni, M. E., Sforza, A. y Sterle, C. (2019). Sustainability-based review of urban freight models. Soft Computing, 23(9), 2899–2909. doi: https://doi.org/10.1007/s00500-019-03786-x
  14. Ranieri, L., Digiesi, S., Silvestri, B. y Roccotelli, M. (2018). A review of last mile logistics innovations in and externalities cost reduction vision. Sustainability, 10(3), 782. doi: https://doi.org/10.3390/su10030782
  15. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339. doi: https://doi.org/10.1016/j.jbusres.2019.07.039
  16. Moher, D., Liberati, A., Tetzlaff, J. y Altman, D. G. (2009). Preferred reporting items for systematic reviews and metaanalyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. doi: https://doi.org/10.1371/journal.pmed.1000097
  17. Russo, F. y Comi, A. (2016). Urban freight transport planning towards green goals: Synthetic environmental evidence from tested results. Sustainability (Switzerland), 8(4). doi: https://doi.org/10.3390/su8040381
  18. Trott, M., Baur, N.-F., Auf der Landwehr, M., Rieck, J. y von Viebahn, C. (2021). Evaluating the role of commercial parking bays for urban stakeholders on last-mile deliveries – A consideration of various sustainability aspects. Journal of Cleaner Production, 312, 127462. doi: https://doi.org/10.1016/j.jclepro.2021.127462
  19. Le Colleter, T., Dumez, D., Lehuédé, F. y Péton, O. (2023). Small and large neighborhood search for the park-and-loop routing problem with parking selection. European Journal of Operational Research, 308(3), 1233–1248. doi: https://doi.org/10.1016/j.ejor.2023.01.007
  20. Salama, M. R. y Srinivas, S. (2022). Collaborative truck multi-drone routing and scheduling problem: Package delivery with flexible launch and recovery sites. Transportation Research Part E: Logistics and Transportation Review, 164, 102788. doi: https://doi.org/10.1016/j.tre.2022.102788
  21. Wang, Y., Tian, X. y Liu, D. (2017). Optimization of urban multi-level logistics distribution network based on the perspective of low carbon. 2017 Chinese Automation Congress (CAC), 4896–4900. doi: https://doi.org/10.1109/CAC.2017.8243646
  22. Schermer, D., Moeini, M. y Wendt, O. (2019). A hybrid VNS/Tabu search algorithm for solving the vehicle routing problem with drones and en route operations. Computers & Operations Research, 109, 134–158. doi: https://doi.org/10.1016/j.cor.2019.04.021
  23. De Oliveira Mota, D. (2021). Dynamic dispatch algorithm proposal for last-mile delivery vehicle. IEEE Latin America Transactions, 19(10), 1618–1623. doi: https://doi.org/10.1109/TLA.2021.9477223
  24. Ko, S., Cho, S. y Lee, C. (2018). Pricing and collaboration in last mile delivery services. Sustainability, 10(12), 4560. doi: https://doi.org/10.3390/su10124560
  25. Sacramento, D., Pisinger, D. y Ropke, S. (2019). An adaptive large neighborhood search metaheuristic for the vehicle routing problem with drones. Transportation Research Part C: Emerging Technologies, 102, 289–315. doi: https://doi.org/10.1016/j.trc.2019.02.018
  26. Villamizar, A., Santos, J., Montoya-Torres, J. R. y Jaca, C. (2018). Using OEE to evaluate the effectiveness of urban freight transportation systems: A case study. International Journal of Production Economics, 197, 232–242. doi: https://doi.org/10.1016/j.ijpe.2018.01.011
  27. Resat, H. G. (2020). Design and analysis of novel hybrid multi-objective optimization approach for data-driven sustainable delivery systems. IEEE Access, 8, 90280–90293. doi: https://doi.org/10.1109/ACCESS.2020.2994186
  28. Fatnassi, E., Chaouachi, J. y Klibi, W. (2015). Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics. Transportation Research Part B: Methodological, 81, 440–460. doi: https://doi.org/10.1016/j.trb.2015.07.016
  29. Paul, S. y Doreswamy, G. (2021). Simulation and optimization framework for on-demand grocery delivery. Winter Simulation Conference (WSC), 1–12. doi: https://doi.org/10.1109/WSC52266.2021.9715480
  30. Wang, Y., Ropke, S., Wen, M. y Bergh, S. (2023). The mobile production vehicle routing problem: Using 3D printing in last mile distribution. European Journal of Operational Research, 305(3), 1407–1423. doi: https://doi.org/10.1016/j.ejor.2022.06.038
  31. Gruzauskas, V., Burinskiene, A. y Krisciunas, A. (2023). Application of information-sharing for resilient and sustainable food delivery in last-mile logistics. Mathematics, 11(2), 303. doi: https://doi.org/10.3390/math11020303
  32. Regué, R. y Bristow, A. L. (2013). Appraising freight tram schemes: a case study of Barcelona. EJTIR Issue, 13(1), 56–78. www.ejtir.tbm.tudelft.nl
  33. Tan, Y., Deng, L., Li, L. y Yuan, F. (2019). The capacitated pollution routing problem with pickup and delivery in the last mile. Asia Pacific Journal of Marketing and Logistics, 31(4), 1193–1215. doi: https://doi.org/10.1108/APJML-06-2018-0217
  34. Jiang, L., Chang, H., Zhao, S., Dong, J. y Lu, W. (2019). A travelling salesman problem with carbon emission reduction in the last mile delivery. IEEE Access, 7, 61620–61627. doi: https://doi.org/10.1109/ACCESS.2019.2915634
  35. Aloui, A., Hamani, N. y Delahoche, L. (2021). An integrated optimization approach using a collaborative strategy for sustainable cities freight transportation: A Case study. Sustainable Cities and Society, 75, 103331. doi: https://doi.org/10.1016/j.scs.2021.103331
  36. Akkad, M. Z. y Bányai, T. (2020). Multi-objective approach for optimization of city logistics considering energy efficiency. Sustainability, 12(18), 7366. doi: https://doi.org/10.3390/su12187366
  37. Betti Sorbelli, F., Corò, F., Das, S. K., Palazzetti, L. y Pinotti, C. M. (2022). On the scheduling of conflictual deliveries in a last-mile delivery scenario with truck-carried drones. Pervasive and Mobile Computing, 87, 101700. doi: https://doi.org/10.1016/j.pmcj.2022.101700
  38. Olapiriyakul, S. y Nguyen, T. T. (2019). Land use and public health impact assessment in a supply chain network design problem: A case study. Journal of Transport Geography, 75, 70–81. doi: https://doi.org/10.1016/j.jtrangeo.2019.01.011
  39. Muñoz-Villamizar, A., Quintero-Araújo, C. L., Montoya-Torres, J. R. y Faulin, J. (2019). Short- and mid-term evaluation of the use of electric vehicles in urban freight transport collaborative networks: a case study. International Journal of Logistics Research and Applications, 22(3), 229–252. doi: https://doi.org/10.1080/13675567.2018.1513467
  40. Lu, M., Huang, C. y Teng, J. (2022). Multi-agent simulation for online fresh food autonomous delivery. Xitong Fangzhen Xuebao / Journal of System Simulation, 34(6), 1185–1195. doi: https://doi.org/10.16182/j.issn1004731x.joss.20-1050
  41. Ratnagiri, M., O’Dwyer, C., Beaver, L. E., Bang, H., Chalaki, B. y Malikopoulos, A. A. (2022). A scalable last-mile delivery service: from simulation to scaled experiment. IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), 4163–4168. doi: https://doi.org/10.1109/ITSC55140.2022.9921797
  42. Gaudron, A., Tamayo, S. y Fortelle, A. de La. (2020). Interactive simulation for collective decision making in city logistics. Transportation Research Procedia, 46, 157–164. doi: https://doi.org/10.1016/j.trpro.2020.03.176
  43. Fehn, F., Engelhardt, R., Dandl, F., Bogenberger, K. y Busch, F. (2023). Integrating parcel deliveries into a ride-pooling service—An agent-based simulation study. Transportation Research Part A: Policy and Practice, 169. doi: https://doi.org/10.1016/j.tra.2022.103580
  44. Horner, H., Pazour, J. y Mitchell, J. E. (2021). Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery. Transportation Research Part E: Logistics and Transportation Review, 153, 102419. doi: https://doi.org/10.1016/j.tre.2021.102419
  45. Manchella, K., Haliem, M., Aggarwal, V. y Bhargava, B. (2022). PassGoodPool: joint passengers and goods fleet management with reinforcement learning aided pricing, matching, and route planning. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3866–3877. doi: https://doi.org/10.1109/TITS.2021.3128877
  46. Ehmke, J. F. y Campbell, A. M. (2014). Customer acceptance mechanisms for home deliveries in metropolitan areas. European Journal of Operational Research, 233(1), 193–207. doi: https://doi.org/10.1016/j.ejor.2013.08.028
  47. Guzenko, A. y Guzenko, N. (2022). Process optimization for last mile logistics. Transportation Research Procedia, 63, 1700–1707. doi: https://doi.org/10.1016/j.trpro.2022.06.184
  48. Wang, C., Lan, H., Saldanha-da-Gama, F. y Chen, Y. (2021). on optimizing a multi-mode last-mile parcel delivery system with vans, truck and Drone. Electronics, 10(20), 2510. doi: https://doi.org/10.3390/electronics10202510
  49. Bozkaya, B., Salman, F. S. y Telciler, K. (2017). An adaptive and diversified vehicle routing approach to reducing the security risk of cash-in-transit operations. Networks, 69(3), 256–269. doi: https://doi.org/10.1002/net.21735
  50. Huang, D. y Han, M. (2021). An optimization route selection method of urban oversize cargo transportation. Applied Sciences, 11(5), 2213. doi: https://doi.org/10.3390/app11052213
  51. Sawik, B., Serrano-Hernandez, A., Muro, A. y Faulin, J. (2022). Multi-Criteria simulation-optimization analysis of usage of automated parcel lockers: a practical approach. Mathematics, 10(23), 4423. doi: https://doi.org/10.3390/math10234423
  52. Baudel, T., Dablanc, L., Alguiar-Melgarejo, P. y Ashton, J. (2016). Optimizing urban freight deliveries: from designing and testing a prototype system to addressing real life challenges. Transportation Research Procedia, 12, 170–180. doi: https://doi.org/10.1016/j.trpro.2016.02.056
  53. Šego, D., Hinić, M. L. y Poljičak, A.-M. (2020). Methods of goods delivery to the historic core of the city of šibenik during the tourist season. LOGI – Scientific Journal on Transport and Logistics, 11(1), 88–98. doi: https://doi.org/10.2478/logi-2020-0009
  54. Ezquerro, S., Moura, J. L. y Alonso, B. (2020). Illegal use of loading bays and its impact on the use of public space. Sustainability, 12(15), 5915. doi: https://doi.org/10.3390/su12155915
  55. Hu, W., Dong, J., Hwang, B., Ren, R. y Chen, Z. (2020). Hybrid optimization procedures applying for two-echelon urban underground logistics network planning: A case study of Beijing. Computers & Industrial Engineering, 144, 106452. doi: https://doi.org/10.1016/j.cie.2020.106452
  56. Muriel, J. E., Zhang, L., Franso, J. C. y Perez-Franco, R. (2022). Assessing the impacts of last mile delivery strategies on delivery vehicles and traffic network performance. Transportation Research Part C: Emerging Technologies, 144, 103915. doi: https://doi.org/10.1016/j.trc.2022.103915
  57. Moufad, I., Jawab, F. y Bouklata, A. (2019). A simulation framework to study the impacts of loading/unloading areas on the urban traffic. 2019 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA), 1–6. doi: https://doi.org/10.1109/LOGISTIQUA.2019.8907304
  58. Hiremath, N. C., Sahu, S. y Tiwari, M. K. (2013). Multi objective outbound logistics network design for a manufacturing supply chain. Journal of Intelligent Manufacturing, 24(6), 1071–1084. doi: https://doi.org/10.1007/s10845-012-0635-8
  59. Rezgui, D., Chaouachi Siala, J., Aggoune-Mtalaa, W. y Bouziri, H. (2019). Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles. Computers & Industrial Engineering, 130, 537–550. doi: https://doi.org/10.1016/j.cie.2019.03.001
  60. Perboli, G. y Rosano, M. (2019). Parcel delivery in urban areas: Opportunities and threats for the mix of traditional and green business models. Transportation Research Part C: Emerging Technologies, 99, 19–36. doi: https://doi.org/10.1016/j.trc.2019.01.006
  61. Xia, Y., Zeng, W., Xing, X., Zhan, Y., Tan, K. H. y Kumar, A. (2023). Joint optimisation of drone routing and battery wear for sustainable supply chain development: a mixed-integer programming model based on blockchain-enabled fleet sharing. Annals of Operations Research, 327(1), 89–127. doi: https://doi.org/10.1007/s10479-021-04459-5
  62. Tamke, F. y Buscher, U. (2021). A branch-and-cut algorithm for the vehicle routing problem with drones. Transportation Research Part B: Methodological, 144, 174–203. doi: https://doi.org/10.1016/j.trb.2020.11.011
  63. Lagin, M., Håkansson, J., Nordström, C., Nyberg, R. G. y Öberg, C. (2022). Last-mile logistics of perishable products: a review of effectiveness and efficiency measures used in empirical research. International Journal of Retail & Distribution Management, 50(13), 116–139. doi: https://doi.org/10.1108/IJRDM-02-2021-0080
  64. Jiang, L., Zang, X., Alghoul, I. I. Y., Fang, X., Dong, J. y Liang, C. (2022). Scheduling the covering delivery problem in last mile delivery. Expert Systems with Applications, 187, 115894. doi: https://doi.org/10.1016/j.eswa.2021.115894
  65. Li, S., Liang, Y., Wang, Z. y Zhang, D. (2021). An optimization model of a sustainable city logistics network design based on goal programming. Sustainability, 13(13), 7418. doi: https://doi.org/10.3390/su13137418
  66. Haripriya, K. y Ganesan, V. K. (2022). Solving Large Scale Vehicle Routing Problems with Hard Time Windows under Travel Time Uncertainty. IFAC-PapersOnLine, 55(10), 233–238. doi: https://doi.org/10.1016/j.ifacol.2022.09.394
  67. Li, J., Fang, Y. y Tang, N. (2022). A cluster-based optimization framework for vehicle routing problem with workload balance. Computers & Industrial Engineering, 169, 108221. doi: https://doi.org/10.1016/j.cie.2022.108221
  68. Gómez-Marín, C. G., Mosquera-Tobón, J. D. y Serna-Urán, C. A. (2023). Integrating multi-agent system and microsimulation for dynamic modeling of urban freight transport. Periodica Polytechnica Transportation Engineering, 51(4), 409–416. doi: https://doi.org/10.3311/PPtr.21024
  69. Guimarães, L. R., de Sousa, J. P. y Prata, B. de A. (2022). Variable fixing heuristics for the capacitated multicommodity network flow problem with multiple transport lines, a heterogeneous fleet and time windows. Transportation Letters, 14(2), 84–93. doi: https://doi.org/10.1080/19427867.2020.1815143
  70. Chen, F. y Wang, Y. (2020). Downward compatible loading optimization with inter-set cost in automobile outbound logistics. European Journal of Operational Research, 287(1), 106–118. doi: https://doi.org/10.1016/j.ejor.2020.04.029
  71. Raj, R. y Murray, C. (2020). The multiple flying sidekicks traveling salesman problem with variable drone speeds. Transportation Research Part C: Emerging Technologies, 120, 102813. doi: https://doi.org/10.1016/j.trc.2020.102813
  72. Nguyen, M. A., Dang, G. T.-H., Hà, M. H. y Pham, M.-T. (2022). The min-cost parallel drone scheduling vehicle routing problem. European Journal of Operational Research, 299(3), 910–930. doi: https://doi.org/10.1016/j.ejor.2021.07.008
  73. Luo, Z., Poon, M., Zhang, Z., Liu, Z. y Lim, A. (2021). The Multi-visit traveling salesman problem with multi-drones. Transportation Research Part C: Emerging Technologies, 128, 103172. doi: https://doi.org/10.1016/j.trc.2021.103172
  74. Xu, Y., Tong, Y., Shi, Y., Tao, Q., Xu, K. y Li, W. (2019). An efficient insertion operator in dynamic ridesharing services. IEEE 35th International Conference on Data Engineering (ICDE), 1022–1033. doi: https://doi.org/10.1109/ICDE.2019.00095
  75. Yu, H., Luo, X. y Wu, T. (2022). Online pickup and delivery problem with constrained capacity to minimize latency. Journal of Combinatorial Optimization, 43(5), 974–993. doi: https://doi.org/10.1007/s10878-020-00615-y
  76. Wang, K., Yuan, B., Zhao, M. y Lu, Y. (2020). Cooperative route planning for the drone and truck in delivery services: A bi-objective optimisation approach. Journal of the Operational Research Society, 71(10), 1657–1674. doi: https://doi.org/10.1080/01605682.2019.1621671
  77. Miguel, F., Frutos, M., Tohme, F. y Babey, M. M. (2019). a decision support tool for urban freight transport planning based on a multi-objective evolutionary algorithm. IEEE Access, 7, 156707–156721. doi: https://doi.org/10.1109/ACCESS.2019.2949948
  78. Ji, Y., Qu, S. y Yu, Z. (2017). Bi-level multi-objective optimization model for last mile delivery using a discrete approach. Journal of Difference Equations and Applications, 23(1–2), 179–190. doi: https://doi.org/10.1080/10236198.2016.1210607
  79. Borghetti, F., Caballini, C., Carboni, A., Grossato, G., Maja, R. y Barabino, B. (2022). The use of drones for last-mile delivery: a numerical case study in Milan, Italy. Sustainability, 14(3), 1766. doi: https://doi.org/10.3390/su14031766
  80. Keimer, A., Laurent-Brouty, N., Farokhi, F., Signargout, H., Cvetkovic, V., Bayen, A. M. y Johansson, K. H. (2018). Information Patterns in the Modeling and Design of Mobility Management Services. Proceedings of the IEEE, 106(4), 554–576. doi: https://doi.org/10.1109/JPROC.2018.2800001
  81. Crainic, T. G., Errico, F., Rei, W. y Ricciardi, N. (2016). Modeling demand uncertainty in two-tier city logistics tactical planning. Transportation Science, 50(2), 559–578. doi: https://doi.org/10.1287/trsc.2015.0606
  82. Chu, H., Zhang, W., Bai, P. y Chen, Y. (2023). Data-driven optimization for last-mile delivery. Complex & Intelligent Systems, 9(3), 2271–2284. doi: https://doi.org/10.1007/s40747-021-00293-1
  83. Le Pira, M., Marcucci, E., Gatta, V., Inturri, G., Ignaccolo, M. y Pluchino, A. (2017). Integrating discrete choice models and agent-based models for ex-ante evaluation of stakeholder policy acceptability in urban freight transport. Research in Transportation Economics, 64, 13–25. doi: https://doi.org/10.1016/j.retrec.2017.08.002
  84. Thaller, C., Niemann, F., Dahmen, B., Clausen, U. y Leerkamp, B. (2017). Describing and explaining urban freight transport by System Dynamics. Transportation Research Procedia, 25, 1075–1094. doi: https://doi.org/10.1016/j.trpro.2017.05.480
  85. Emberger, G. y Pfaffenbichler, P. (2020). A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model. Transport Policy, 98, 57–67. doi: https://doi.org/10.1016/j.tranpol.2020.06.014
  86. Zeng, Y., Tong, Y. y Chen, L. (2020). Last-mile delivery made practical: An efficient route planning framework with theoretical guarantees. Proceedings of the VLDB Endowment, 13(3), 320–333. doi: https://doi.org/10.14778/3368289.3368297
  87. Salama, M. y Srinivas, S. (2020). Joint optimization of customer location clustering and drone-based routing for lastmile deliveries. Transportation Research Part C: Emerging Technologies, 114, 620–642. doi: https://doi.org/10.1016/j.trc.2020.01.019
  88. Yeomans, J. S. (2021). A multicriteria, bat algorithm approach for computing the range limited routing problem for electric trucks. Wseas Transactions On Circuits And Systems, 20, 96–106. doi: https://doi.org/10.37394/23201.2021.20.13
  89. Pelletier, S., Jabali, O. y Laporte, G. (2019). The electric vehicle routing problem with energy consumption uncertainty. Transportation Research Part B: Methodological, 126, 225–255. doi: https://doi.org/10.1016/j.trb.2019.06.006
  90. Iwan, S. y Małecki, K. (2017). Utilization of cellular automata for analysis of the efficiency of urban freight transport measures based on loading/unloading bays example. Transportation Research Procedia, 25, 1021–1035. doi: https://doi.org/10.1016/j.trpro.2017.05.476
  91. Vishwanath, A., Gan, H. S., Kalyanaraman, S., Winter, S. y Mareels, I. (2014). Personalised public transportation: A new mobility model for urban and suburban transportation. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), 1831–1836. doi: https://doi.org/10.1109/ITSC.2014.6957959
  92. Bányai, T. (2018). Real-Time decision making in first mile and last mile logistics: how smart scheduling affects energy efficiency of hyperconnected supply chain solutions. Energies, 11(7), 1833. doi: https://doi.org/10.3390/en11071833
  93. Validi, S., Bhattacharya, A. y Byrne, P. J. (2020). Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model. Annals of Operations Research, 290(1–2), 191–222. doi: https://doi.org/10.1007/s10479-018-2887-y
  94. Anderluh, A., Nolz, P. C., Hemmelmayr, V. C. y Crainic, T. G. (2021). Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and ‘grey zone’ customers arising in urban logistics. European Journal of Operational Research, 289(3), 940–958. doi: https://doi.org/10.1016/j.ejor.2019.07.049
  95. Stinson, M., Enam, A., Moore, A. y Auld, J. (2019). Citywide impacts of e-commerce. Proceedings of the 2nd ACM/EIGSCC Symposium on Smart Cities and Communities, 10, 1–7. doi: https://doi.org/10.1145/3357492.3358633
  96. de Grancy, G. S. (2015). An Adaptive Metaheuristic for Vehicle Routing Problems with Time Windows and Multiple Service Workers. J. Univers. Comput. Sci., 21, 1143–1167. https://api.semanticscholar.org/CorpusID:14308183
  97. Ren, T., Jiang, Z., Cai, X., Yu, Y., Xing, L., Zhuang, Y. y Li, Z. (2021). A dynamic routing optimization problem considering joint delivery of passengers and parcels. Neural Computing and Applications, 33(16), 10323–10334. doi: https://doi.org/10.1007/s00521-021-05794-1
  98. Arbabi, H., Nasiri, M. M. y Bozorgi-Amiri, A. (2021). A hub-and-spoke architecture for a parcel delivery system using the cross-docking distribution strategy. Engineering Optimization, 53(9), 1593–1612. doi: https://doi.org/10.1080/0305215X.2020.1808973
  99. Liu, D., Yan, P., Pu, Z., Wang, Y. y Kaisar, E. I. (2021b). Hybrid artificial immune algorithm for optimizing a Van-Robot E-grocery delivery system. Transportation Research Part E: Logistics and Transportation Review, 154, 102466. doi: https://doi.org/10.1016/j.tre.2021.102466
  100. Dang, Y., Allen, T. T. y Singh, M. (2022). A heterogeneous vehicle routing problem with common carriers and time regulations: Mathematical formulation and a two-color ant colony search. Computers & Industrial Engineering, 168, 108036. doi: https://doi.org/10.1016/j.cie.2022.108036
  101. Mohamed Ben, S., Jawab Sidi Mohamed Ben, F., Imane, M. y Fouad, J. (2020). Dassia: A Micro-Simulation approach to diagnose urban freight delivery areas impacts on traffic flow. International Journal of Scientific and Technology Research, 9(2), 3737–3742.
  102. Xu, Y., Tong, Y., Shi, Y., Tao, Q., Xu, K. y Li, W. (2019). An Efficient Insertion Operator in Dynamic Ridesharing Services. IEEE 35th International Conference on Data Engineering (ICDE), 1022–1033. doi: https://doi.org/10.1109/ICDE.2019.0009
  103. Yuan, Y., Cattaruzza, D., Ogier, M., Semet, F. y Vigo, D. (2021). A column generation based heuristic for the generalized vehicle routing problem with time windows. Transportation Research Part E: Logistics and Transportation Review, 152, 102391. doi: https://doi.org/10.1016/j.tre.2021.102391
  104. Amiri, M. y Farvaresh, H. (2023). Carrier collaboration with the simultaneous presence of transferable and nontransferable utilities. European Journal of Operational Research, 304(2), 596–617. doi: https://doi.org/10.1016/j.ejor.2022.04.033