Skip to main navigation menu Skip to main content Skip to site footer

SECTION B: LIFE SCIENCES

Vol. 16 No. 1 (2024)

On the use of anthropogenic materials in nest building of House Wren (Troglodytes aedon), a report from Parque Los Algarrobos, Cumbayá, Ecuador

DOI
https://doi.org/10.18272/aci.v16i1.3169
Submitted
November 30, 2023
Published
2024-04-30

Abstract

Urbanization has prompted shifts in avian nesting behaviors, with some bird species incorporating anthropogenic nest materials (ANMs) into their nests. This study focuses on Troglodytes aedon (House Wren) in Ecuador, exploring the factors influencing their use of ANMs. Observations in Parque Los Algarrobos revealed a House Wren carrying a piece of transparent plastic, entering a street lamp and emergind from it without the plastic. Additional data from iNaturalist showcased widespread ANM use in House Wren nests across Ecuador.

viewed = 122 times

References

  1. Hansell, M. H. (2005). Animal Architecture. OUP Oxford.
  2. Mainwaring, M. C., Reynolds, S. J. & Weidinger, K. (2015). The influence of predation on the location and design of nests. In D. C. Deeming & S. J. Reynolds (Eds.), Nests, Eggs, and Incubation: New ideas about avian reproduction (p.0). Oxford University Press. doi: https://doi.org/10.1093/acprof:oso/9780198718666.003.0005
  3. Medina, I., M. Perez, D., Silva, A. C. A., Cally, J., León, C., Maliet, O. & Quintero, I. (2022). Nest architecture is linked with ecological success in songbirds. Ecology Letters, 25(6), 1365–1375. doi: https://doi.org/10.1111/ele.13998
  4. Madden, J. (2001). Sex, bowers and brains. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1469), 833–838. doi: https://doi.org/10.1098/rspb.2000.1425
  5. Western, D. (2001). Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences, 98(10), 5458–5465. doi: https://doi.org/10.1073/pnas.101093598
  6. Jagiello, Z., Dylewski, Ł., Tobolka, M. & Aguirre, J. I. (2019). Life in a polluted world: A global review of anthropogenic materials in bird nests. Environmental Pollution, 251, 717–722. doi: https://doi.org/10.1016/j.envpol.2019.05.028
  7. Batisteli, A. F., Guilhermo-Ferreira, R. & Sarmento, H. (2019). Abundance and prevalence of plastic twine in nests of Neotropical farmland birds. The Wilson Journal of Ornithology, 131(1), 201. doi: https://doi.org/10.1676/18-24
  8. Grant, M. L., Lavers, J. L., Hutton, I. & Bond, A. L. (2021). Seabird breeding islands as sinks for marine plastic debris. Environmental Pollution, 276, 116734. doi: https://doi.org/10.1016/j.envpol.2021.116734
  9. O’Hanlon, N. J., James, N. A., Masden, E. A. & Bond, A. L. (2017). Seabirds and marine plastic debris in the northeastern Atlantic: A synthesis and recommendations for monitoring and research. Environmental Pollution, 231, 1291–1301. doi: https://doi.org/10.1016/j.envpol.2017.08.101
  10. O’Hanlon, N. J., Bond, A. L., Masden, E. A., Lavers, J. L. & James, N. A. (2021). Measuring nest incorporation of anthropogenic debris by seabirds: An opportunistic approach increases geographic scope and reduces costs. Marine Pollution Bulletin, 171, 112706. doi: https://doi.org/10.1016/j.marpolbul.2021.112706
  11. Ryan, P. G. (2020). Using photographs to record plastic in seabird nests. Marine Pollution Bulletin, 156, 111262. doi: https://doi.org/10.1016/j.marpolbul.2020.111262
  12. Tavares, D. C., Moura, J. F., Acevedo-Trejos, E., Crawford, R. J. M., Makhado, A., Lavers, J. L., Witteveen, M., Ryan, P. G. & Merico, A. (2020). Confidence intervals and sample size for estimating the prevalence of plastic debris in seabird nests. Environmental Pollution, 263, 114394. doi: https://doi.org/10.1016/j.envpol.2020.114394
  13. Yorio, P., Suárez, N., Ibarra, C., Gonzalez, P., Canti, S., Kasinsky, T. & Marinao, C. (2022). Anthropogenic debris in Kelp Gull and other seabird nests in northern Patagonia, Argentina. Marine Pollution Bulletin, 175, 113404. doi: https://doi.org/10.1016/j.marpolbul.2022.113404
  14. Antczak, M., Hromada, M., Czechowski, P., Tabor, J., Zabłocki, P., Grzybek, J. & Tryjanowski, P. (2010). A new material for old solutions—The case of plastic string used in Great Grey Shrike nests. Acta Ethologica, 13(2), 87–91. doi: https://doi.org/10.1007/s10211-010-0077-2
  15. Azevedo-Santos, V. M., Giarrizzo, T. & Arcifa, M. S. (2022). Plastic use by a Brazilian freshwater bird species in its nesting activities. Water Biology and Security, 1(4), 100065. doi: https://doi.org/10.1016/j.watbs.2022.100065
  16. Blettler, M. C. M., Gauna, L., Andréault, A., Abrial, E., Lorenzón, R. E., Espinola, L. A. & Wantzen, K. M. (2020). The use of anthropogenic debris as nesting material by the greater thornbird, an inland–wetland-associated bird of South America. Environmental Science and Pollution Research, 27(33), 41647–41655. doi: https://doi.org/10.1007/s11356-020-10124-4
  17. Borgia, G. (1985). Bower quality, number of decorations and mating success of male satin bowerbirds (Ptilonorhynchus violaceus): An experimental analysis. Animal Behaviour, 33(1), 266–271. doi: https://doi.org/10.1016/S0003-3472(85)80140-8
  18. Briggs, K. B., Deeming, D. C. & Mainwaring, M. C. (2023). Plastic is a widely used and selectively chosen nesting material for pied flycatchers (Ficedula hypoleuca) in rural woodland habitats. Science of The Total Environment, 854, 158660. doi: https://doi.org/10.1016/j.scitotenv.2022.158660
  19. Broughton, R. K. & Parry, W. (2019). A Long-tailed Tit Aegithalos caudatus nest constructed from plastic fibres supports the theory of concealment by light reflectance. Ringing & Migration, 34(2), 120–123. doi: https://doi.org/10.1080/03078698.2019.1830518
  20. Carbó-Ramírez, P., González-Arrieta, R. A. & Zuria, I. (2015). Breeding Biology of the Rufous-backed Robin ( Turdus rufopalliatus ) in an Urban Area Outside its Original Distribution Range. The Wilson Journal of Ornithology, 127(3), 515–521. doi: https://doi.org/10.1676/14-056.1
  21. Gosler, A. G. (1987). Pattern and process in the bill morphology of the Great Tit Parus major. Ibis, 129(s2), 451–476. doi: https://doi.org/10.1111/j.1474-919X.1987.tb08234.x
  22. Harvey, J. A., Chernicky, K., Simons, S. R., Verrett, T. B., Chaves, J. A. & Knutie, S. A. (2021). Urban living influences the nesting success of Darwin’s finches in the Galápagos Islands. Ecology and Evolution, 11(10), 5038–5048. doi: https://doi.org/10.1002/ece3.7360
  23. Igic, B., Cassey, P., Samaš, P., Grim, T. & Hauber, M. (2009). Cigarette butts form a perceptually cryptic component of Song Thrush (Turdus philomelos) nests. Notornis, 56, 134–138.
  24. Järvinen, P. & Brommer, J. E. (2020). Lining the nest with more feathers increases offspring recruitment probability: Selection on an extended phenotype in the blue tit. Ecology and Evolution, 10(23), 13327–13333. doi: https://doi.org/10.1002/ece3.6931
  25. Kucherenko, V. M. & Ivanovskaya, A. V. (2020). Variation in common blackbird (Turdus merula) nest characteristics in urban and suburban localities in Crimea. Zoodiversity, 54(2), 157–162. doi: https://doi.org/10.15407/zoo2020.02.157
  26. Townsend, A. K. & Barker, C. M. (2014). Plastic and the Nest Entanglement of Urban and Agricultural Crows. PLoS ONE, 9(1), e88006. doi: https://doi.org/10.1371/journal.pone.0088006
  27. Wang, Y., Chen, S., Blair, R. B., Jiang, P. & Ding, P. (2009). Nest composition adjustments by Chinese Bulbuls Pycnonotus sinensis in an urbanized landscape of Hangzhou (E China). Acta Ornithologica, 44(2), 185–192. doi: https://doi.org/10.3161/000164509X482768
  28. Cristofoli, S. I. & Sander, M. (2007). Composição do ninho de corruíra: Troglodytes musculus Naumann, 1823 (Passeriformes: Troglodytidae). Biodiversidade Pampeana, 5(2). https://revistaseletronicas.pucrs.br/ojs/index.php/biodiversidadepampeana/article/view/2628
  29. Rusnak, C. M. & Labisky, R. F. (2003). Carolina Wren (Thryothorus ludovicianus).
  30. Wojciechowski, J., Ceschin, F., Pereto, S. C. a. S., Ribas, L. G. S., Bezerra, L. a. V., Dittrich, J., Siqueira, T., & Padial, A. A. (2017). Latin American scientific contribution to ecology. Anais Da Academia Brasileira de Ciências, 89, 2663–2674. doi: https://doi.org/10.1590/0001-3765201720160535
  31. Levin, R. N., Correa, S. M., Freund, K. A. & Fuxjager, M. J. (2023). Latitudinal and elevational variation in the reproductive biology of house wrens, Troglodytes aedon. Ecology and Evolution, 13(9), e10476. doi: https://doi.org/10.1002/ece3.10476
  32. Tubaro, P. L. (1990). Song description of the House Wren (Troglodytes aedon) in two populations of eastern Argentina, and some indirect evidences of imitative vocal learning. El Hornero, 013(02). https://bibliotecadigital.exactas.uba.ar/collection/hornero/document/hornero_v013_n02_p111
  33. Hilty, S. L. & Brown, W. L. (1986). A Guide to the Birds of Colombia. Princeton University Press.
  34. Ridgely, R. S. & Greenfield, P. J. (2001). The birds of Ecuador: Vol. Volume 1: Status, distribution and taxonomy. New York: Comstock/Cornell Paperbacks, Cornell University Press
  35. Freile, J. & Restall, R. (2018). Birds of Ecuador. London: Bloomsbury Publishing.
  36. Rocha (2021). Guía completa para conocer Aves del Uruguay 2da ed. Edición de la banda Banda Oriental.
  37. Muller, K. L., Stamps, J. A., Krishnan, V. V. & Willits, N. H. (1997). The effects of conspecific attraction and habitat quality on habitat selection in territorial birds (Troglodytes aedon). The American Naturalist, 150(5), 650-661. doi: https://doi.org/10.1086/286087
  38. Heppner, J. J. & Ouyang, J. Q. (2021). Incubation behavior differences in urban and rural house wrens, Troglodytes aedon. Frontiers in Ecology and Evolution, 9, 590069. doi: https://doi.org/10.3389/fevo.2021.590069
  39. Sementili-Cardoso, G. & Donatelli, R. J. (2021). Anthropogenic noise and atmospheric absorption of sound induce amplitude shifts in the songs of Southern House Wren (Troglodytes aedon musculus). Urban Ecosystems, 24(5), 1001-1009. doi: https://doi.org/10.1007/s11252-021-01092-9
  40. vonHoldt, B. M., Kartzinel, R. Y., van Oers, K., Verhoeven, K. J. & Ouyang, J. (2021). Reorganization of molecular networks associated with DNA methylation and changes in the rearing environments of the house wren (Troglodytes aedon). bioRxiv, 2021-05. doi: https://doi.org/10.1101/2021.05.04.442647
  41. McMullan, M. & Navarrete, L. (2017). Fieldbook of the birds of Ecuador, including the Galapagos islands and common mammals. Second edition. Quito: Ratty Ediciones.
  42. Atienzar, F., Belda, E. & Greño, J. (2010). Comparación de materiales utilizados en la construcción del nido y de los parámetros reproductores en el chochín Troglodytes troglodytes en la Font Roja y en la Sierra de Mariola. Iberis 8: 17-22.
  43. Honorato, M. T., Altamirano, T. A., Ibarra, J. T., De la Maza, M., Bonacic, C. & Martin, K. (2016). Composición y preferencia de materiales en nidos de vertebrados nidificadores de cavidades en el bosque templado andino de Chile. Bosque (Valdivia), 37(3), 485-492.
  44. Jagiello, Z. A., Dylewski, Ł., Winiarska, D., Zolnierowicz, K. M. & Tobolka, M. (2018). Factors determining the occurrence of anthropogenic materials in nests of the white stork Ciconia ciconia. Environmental Science and Pollution Research, 25(15), 14726–14733. doi: https://doi.org/10.1007/s11356-018-1626-x
  45. Reynolds, S. J., Ibáñez-Álamo, J. D., Sumasgutner, P. & Mainwaring, M. C. (2019). Urbanisation and nest building in birds: A review of threats and opportunities. Journal of Ornithology, 160(3), 841–860. doi: https://doi.org/10.1007/s10336-019-01657-8
  46. Evans, K. L., Newson, S. E. & Gaston, K. J. (2009). Habitat influences on urban avian assemblages. Ibis, 151(1), 19–39. doi: https://doi.org/10.1111/j.1474-919X.2008.00898.x
  47. Ibáñez-Álamo, J. D., Pineda-Pampliega, J., Thomson, R. L., Aguirre, J. I., Díez-Fernández, A., Faivre, B., Figuerola, J. & Verhulst, S. (2018). Urban blackbirds have shorter telomeres. Biology Letters, 14(3), 20180083. doi: https://doi.org/10.1098/rsbl.2018.0083
  48. Reynolds, S. J., Davies, C. S., Elwell, E., Tasker, P. J., Williams, A., Sadler, J. P. & Hunt, D. (2016). Does the Urban Gradient Influence the Composition and Ectoparasite Load of Nests of an Urban Bird Species? Avian Biology Research, 9(4), 224–234. doi: https://doi.org/10.3184/175815516X14725499175665
  49. Wang, Y., Chen, S., Jiang, P. & Ding, P. (2008). Black-billed Magpies (Pica pica) adjust nest characteristics to adapt to urbanization in Hangzhou, China. Canadian Journal of Zoology, 86(7), 676–684. doi: https://doi.org/10.1139/Z08-045
  50. Wang, Y., Huang, Q., Lan, S., Zhang, Q. & Chen, S. (2015). Common blackbirds Turdus merula use anthropogenic structures as nesting sites in an urbanized landscape. Current Zoology, 61(3), 435–443. doi: https://doi.org/10.1093/czoolo/61.3.435
  51. Clayton, D. H. & Wolfe, N. D. (1993). The adaptive significance of self-medication. Trends in Ecology & Evolution, 8(2), 60–63. doi: https://doi.org/10.1016/0169-5347(93)90160-Q
  52. Suárez-Rodríguez, M., López-Rull, I. & Macías Garcia, C. (2013). Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: New ingredients for an old recipe? Biology Letters, 9(1), 20120931. doi: https://doi.org/10.1098/rsbl.2012.0931
  53. Suárez‐Rodríguez, M. & Macías Garcia, C. (2014). There is no such a thing as a free cigarette; lining nests with discarded butts brings short‐term benefits, but causes toxic damage. Journal of Evolutionary Biology, 27(12), 2719–2726. doi: https://doi.org/10.1111/jeb.12531
  54. Suárez‐Rodríguez, M. & Garcia, C. M. (2017). An experimental demonstration that house finches add cigarette butts in response to ectoparasites. Journal of Avian Biology, 48(10), 1316–1321. doi: https://doi.org/10.1111/jav.01324
  55. Jagiello, Z., Corsini, M., Dylewski, Ł., Ibáñez-Álamo, J. D. & Szulkin, M. (2022). The extended avian urban phenotype: Anthropogenic solid waste pollution, nest design, and fitness. Science of The Total Environment, 838, 156034. doi: https://doi.org/10.1016/j.scitotenv.2022.156034
  56. Jagiello, Z., Reynolds, S. J., Nagy, J., Mainwaring, M. C. & Ibáñez-Álamo, J. D. (2023). Why do some bird species incorporate more anthropogenic materials into their nests than others? Philosophical Transactions of the Royal Society B: Biological Sciences, 378(1884), 20220156. doi: https://doi.org/10.1098/rstb.2022.0156
  57. Schaedelin, F. C. & Taborsky, M. (2009). Extended phenotypes as signals. Biological Reviews, 84(2), 293–313. doi: https://doi.org/10.1111/j.1469-185X.2008.00075.x